T7 Sequencing Kit

Product number 27168201
100 reactions

T7 Sequencing Mixes*

Standard 27167401
100 reactions

7-Deaza 27168601
50 reactions

*Used to replenish “Read Short” mixes in 27168201 kit.

STORAGE

Store at -15°C to -30°C.

Warning: For research use only. Not recommended or intended for diagnosis of disease in humans or animals. Do not use internally or externally in humans or animals.
CONTENTS

Components of the Kit ... 3
Quality Control ... 5
Safety warnings and precautions .. 5, 26
Introduction .. 6
Protocol .. 8

Procedures
A: Annealing of Primer to Single-Stranded Template ... 9
B: Quick Annealing of Primer to Double-Stranded Template .. 9
C: Standard Annealing of Primer to Double-Stranded Template .. 10
D: Sequencing Reactions .. 11

Appendices
1: Additional Reagents Required ... 13
2: Culture of Recombinant Phage .. 15
3: Isolation of Single-Stranded Template ... 16
4: Isolation of Double-Stranded Template .. 16
5: Reducing the Amount of Template and Labeled Nucleotide ... 17
6: Electrophoresis .. 18
7: Autoradiography and Analysis .. 20

Troubleshooting .. 21
References ... 22
Related Products .. 23
Contact Information ... 25
The T7 Sequencing™ Kit from USB Corporation provides all of the solutions and reagents required for 100 dideoxy sequencing reactions using T7 DNA polymerase. With these reagents, chain-terminated fragments representing as much as 1 kilobase of DNA sequence may be generated. In addition to cloned T7 DNA polymerase, the kit includes optimized mixtures of ultrapure deoxy- and dideoxynucleotides, and labeling mixes which allow the use of 33P, 32P and 35S labeled dATP and dCTP. Detailed protocols are provided for all stages of DNA sequencing.

COMPONENTS OF THE KIT

‘A’ Mix-Short: 840µM each dCTP, dGTP and dTTP; 93.5µM dATP; 14µM ddATP; 40mM Tris-HCl (pH 7.5) and 50mM NaCl.

‘C’ Mix-Short: 840µM each dATP, dGTP and dTTP; 93.5µM dCTP; 17µM ddCTP; 40mM Tris-HCl (pH 7.5) and 50mM NaCl.

‘G’ Mix-Short: 840µM each dATP, dCTP and dTTP; 93.5µM dGTP; 14µM ddGTP; 40mM Tris-HCl (pH 7.5) and 50mM NaCl.

‘T’ Mix-Short: 840µM each dATP, dCTP and dGTP; 93.5µM dTTP; 14µM ddTTP; 40mM Tris-HCl (pH 7.5) and 50mM NaCl.

‘A’ Mix-Long: 840µM each dCTP, dGTP and dTTP; 93.5µM dATP; 2.1µM ddATP; 40mM Tris-HCl (pH 7.5) and 50mM NaCl.

‘C’ Mix-Long: 840µM each dATP, dGTP and dTTP; 93.5µM dCTP; 2.8µM ddCTP; 40mM Tris-HCl (pH 7.5) and 50mM NaCl.

‘G’ Mix-Long: 840µM each dATP, dCTP and dTTP; 93.5µM dGTP; 2.8µM ddGTP; 40mM Tris-HCl (pH 7.5) and 50mM NaCl.

‘T’ Mix-Long: 840µM each dATP, dCTP and dGTP; 93.5µM dTTP; 2.8µM ddTTP; 40mM Tris-HCl (pH 7.5) and 50mM NaCl.

T7 DNA Polymerase: 8 units/µl in buffered glycerol solution.

Enzyme Dilution Buffer: 25mM Tris-HCl (pH 7.5), 5mM DTT, 100µg BSA/ml and 5% glycerol.
Universal Primer: 5'-d[GTAAAACGACGGCCAGT]-3' in aqueous solution, 0.86 A$_{260}$ units/ml (5pmol/µl).

Annealing Buffer: 1M Tris-HCl (pH 7.5), 100mM MgCl$_2$ and 160mM DTT.

Labeling Mix-dATP: 1.375µM each dCTP, dGTP and dTTP and 333.5mM NaCl.

Labeling Mix-dCTP: 1.375µM each dATP, dGTP and dTTP and 333.5mM NaCl.

Stop Solution: 0.3% each Bromophenol Blue and Xylene Cyanol FF; 10mM EDTA (pH 7.5) and 97.5% deionized formamide.

Control Template: 10µg of single-stranded M13mp18 DNA in 50µl of Tris-EDTA buffer.

NOTE: Remove the stock of T7 DNA Polymerase from storage at -20°C only momentarily to remove an aliquot. During use, keep all other reagents on ice until required. Additional reagents required are listed in Appendix 1, page 19.

All nucleotide mixtures should be stored frozen at -20°C and for longest life be kept on ice when thawed for use. The buffers, control DNA, primer and stop solution can be stored for 4-8 weeks at 4°C. The T7 DNA Polymerase must be stored at -20°C and never be allowed to warm up above -20°C. Never store T7 DNA Polymerase in a frost-free freezer (the temperature rises above 0°C daily).
QUALITY CONTROL

All kit batches are functionally tested using radiolabeled-dATP, radiolabeled-dCTP and M13mp18 single-stranded DNA template as described in this protocol. Release specifications are based on sequence length, band intensity and sequence quality. The sequence must be visible up to 300 base pairs on a standardized gel with less than 24 hours exposure. The sequence must also be free of background bands strong enough to interfere with sequence interpretation.

SAFETY WARNINGS AND PRECAUTIONS

Warning: For research use only. Not recommended or intended for diagnosis of disease in humans or animals. Do not use internally or externally in humans or animals.

Caution: This product is to be used with radioactive material. Please follow the manufacturer’s instructions relating to the handling, use, storage, and disposal of such material.

All chemicals should be considered as potentially hazardous. We therefore recommend that this product is handled only by those persons who have been trained in laboratory techniques and that it is used in accordance with the principles of good laboratory practice. Wear suitable protective clothing, such as a lab coat, safety glasses, and gloves. Care should be taken to avoid contact with skin or eyes. In the case of contact with skin or eyes wash immediately with water (see material safety data sheet for specific advice).
INTRODUCTION

Dideoxy sequencing depends upon base-specific termination of enzyme-catalyzed primer-extension reactions (1). Four separate reactions are performed, all containing primer, template, and the four deoxynucleotides, but each including a different chain-terminating dideoxynucleotide. In each reaction, a mixture of fragments is generated, each terminated with the particular dideoxynucleotide present in that reaction. Thus, the chain-terminated fragments in each reaction represent the occurrence of the corresponding deoxynucleotide in the sequence. When the products of the four reactions are electrophoresed side-by-side, the sequence in which nucleotides are added to the primer can be deduced from the sequence in which successively larger fragments occur in the four lanes. The positions of the separated fragments are detected by virtue of a label (radioactive or fluorescent) introduced either before or during the primer-extension reactions.

In the original procedure, primer extension was catalyzed by the Klenow fragment of *E. coli* DNA polymerase I. T7 DNA polymerase does, however, offer significant advantages over Klenow fragment for sequencing:

- Because of its processivity and high rate of polymerization, longer chain-terminated fragments (≥ one kilobase in length) can be generated very rapidly, with a more even distribution of label between fragments. This allows a greater length of sequence to be determined reliably from a single set of sequencing reactions.
- Because of its tolerance for substrate analogues, the same set of sequencing mixes may be used with either ³²P, ³³P or ³⁵S. In contrast, the Klenow fragment requires separate mixes for the two labels.

For successful sequencing, the enzyme used to catalyze primer extension must also be low in exonuclease activity, so that all chain-terminated fragments have the same 5'-end, and so that (di)deoxynucleotides are not removed from the 3'-ends of these fragments. Under the reaction conditions specified in this booklet, T7 DNA polymerase is suitably low in exonuclease activity.

The major practical difference when using T7 DNA polymerase rather than Klenow fragment is that the primer-extension reactions are performed in two stages, a “labeling” reaction and a “termination” reaction. The two stages are required because the enzyme uses dideoxynucleotides very readily. To permit synthesis of long chain-terminated fragments, dideoxynucleotides are therefore
excluded during the first stage, then added for the second. Even so, the total time required for these reactions is significantly less than the time required for reactions with the Klenow fragment. The steps involved in using T7 DNA polymerase to sequence DNA using a radioactive label are as follows:

- **Isolation of template DNA**, either single-stranded or double-stranded, containing the sequence to be determined (the “target” sequence). Protocols for culturing recombinant M13 or phagemids are given in Appendix 2. Protocols for isolating single-stranded and double-stranded DNA templates are found in Appendices 3 and 4. Other rapid procedures (2, 3) may also be used, if particular care is taken to remove all proteins.

- **Annealing of a primer** to the template, adjacent to the target sequence. Instructions for annealing primers to single-stranded templates are given in Procedure A. Two protocols, Procedures B and C, are given for annealing primers to double-stranded templates.

- **Labeling reaction** where enzyme-catalyzed extension of the primer is initiated in the presence of limiting concentrations of all four deoxynucleotides, one of which is radiolabeled.

- **Termination reactions** where the labeled and extended primer from the labeling reaction is terminated in four separate reactions, each containing a specific dideoxynucleotide in addition to non-limiting concentrations of all four deoxynucleotides.

 NOTE: The labeling and termination reactions are performed in the same way for both single- and double-stranded templates, as described in Procedure D. If template or labeled nucleotide is limited, amounts of these reagents can be reduced with some sacrifice in performance. Such modifications to Procedure D are discussed in Appendix 5.

- **Electrophoresis** of chain-terminated reaction products in four adjacent lanes of a thin polyacrylamide gel, under denaturing conditions. Optimal results are obtained using wedge-shaped gels. Instructions for gel preparation and use are given in Appendix 6.

- **Autoradiography** to detect electrophoretically separated fragments. Appendix 7 contains instructions for autoradiography and guidelines for interpreting the results.

Common problems encountered in sequencing with T7 DNA polymerase are discussed in the Troubleshooting Guide following Appendix 7.
PROTOCOL

Introduction

Choice of Label

Unlike the Klenow fragment, T7 DNA polymerase utilizes 35S-labeled nucleotides as efficiently as 33P or 32P-labeled nucleotides. Therefore, the same protocol and set of nucleotide mixes can be used with either radionucleotide. To allow even greater flexibility in choice of label, two labeling mixes are included: Labeling Mix-dATP for use with $[^{\alpha-33}P]$dATP, $[^{\alpha-32}P]$dATP or $[^{\alpha-35}S]$dATPαS and Labeling Mix-dCTP for use with $[^{\alpha-33}P]$dATP, $[^{\alpha-32}P]$dCTP or $[^{\alpha-35}S]$dCTPαS.

The choice of radiolabel should be based primarily on the following considerations:

- **With 32P**, the sequencing gel can be autoradiographed without drying, and with shorter exposure times than required for 35S.
- **With 33P, 35S**, autoradiographic resolution is better than with 32P, exposure to radiation is reduced, and the labeled nucleotide has a longer “shelf-life”. (Half lives are 25 days for 33P; 87 days for 35S.)

Reactions to “Read Short” and “Read Long”

The sequencing reactions can be performed using either the “Read Short” or “Read Long” conditions:

- The “Read Short” conditions allow sequence to be read up to approximately 500 nucleotides from the primer, with either 33P, 32P or 35S. (The four nucleotide mixes with suffix “-Short” are designed for such reactions.)
- The “Read Long” conditions generate fragments covering the sequence up to 1000 nucleotides or more from the primer. (The four nucleotide mixes with suffix “-Long” are designed for such reactions.) The full value of these conditions can of course only be realized if a gel system capable of resolving very large chain-terminated fragments is available. Because of differences in autoradiographic detection efficiencies, the starting point for readable sequence will depend on the radiolabel used. With overnight exposures, the sequence will generally start 10-50 bases from the primer with 32P and 50-100 bases from the primer with 35S.

In practice, the “Read Short” conditions can be used for most routine sequencing. If a high-resolution gel system is available, the “Read Long” reactions should be run as well, to reveal additional sequence information.
Procedure A: Annealing of Primer to Single-Stranded Template

Single-stranded DNA can be isolated as described in Appendix 3.

- Adjust the concentration of the template so that 10μl contain 1.5-2μg of DNA.
- Using the Universal Primer provided in the kit, dilute an appropriate amount of the stock 1:5 with sterile distilled water. If using a primer other than the Universal Primer, adjust its concentration to 0.8μM (2μl should contain 1-2pmol); for a 17-base primer, this will be 4.44μg/ml.
- Add the following to a 1.5ml microcentrifuge tube:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template DNA</td>
<td>10μl</td>
</tr>
<tr>
<td>Primer</td>
<td>2μl</td>
</tr>
<tr>
<td>Annealing Buffer</td>
<td>2μl</td>
</tr>
<tr>
<td>Total Volume</td>
<td>14μl</td>
</tr>
</tbody>
</table>

- Vortex the tube gently, then centrifuge briefly. Incubate at 60°C for 10 minutes.
- Place the tube at room temperature for at least 10 minutes, then centrifuge briefly.
- Proceed immediately with the sequencing reactions, Procedure D. (It is better to use freshly annealed primer/template, rather than to store the solution at room temperature or -20°C prior to use.)

Procedure B: Quick Annealing of Primer to Double-Stranded Template

Double-stranded DNA can be isolated as described in Appendix 4.

The quick annealing protocol is very sensitive to even slight changes in pH. Calibrated 1.000 ± 0.005M NaOH and 1.000 ± 0.005M HCl are essential for the success of this procedure. A simple dilution of concentrated NaOH and HCl is not sufficient. Use the same micropipette to add both the NaOH and HCl since slight variations in pipetting can adversely affect the results. If results utilizing this protocol are unsatisfactory, repeat the sequencing reactions using the template/primer prepared according to the standard annealing protocol, Procedure C.

- Adjust the concentration of the template so that 8μl contain 1.5-2μg of DNA.
- With the Universal Primer, use 2μl of undiluted stock. If using a primer other than the Universal Primer, adjust its concentration to 2.5-5μM (2μl should contain 5-10pmol); for a 17-base primer, this would equal 15-30μg/ml.
• Add the following to a 1.5ml microcentrifuge tube:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template DNA</td>
<td>8μl</td>
</tr>
<tr>
<td>Primer</td>
<td>2μl</td>
</tr>
<tr>
<td>1.000 ± 0.005M NaOH</td>
<td>1.5μl</td>
</tr>
<tr>
<td>Total Volume</td>
<td>11.5μl</td>
</tr>
</tbody>
</table>

• Vortex the tube gently, then centrifuge briefly. Incubate at 65°C for 5 minutes.

• Transfer the tube to a 37°C water bath and quickly add 1.5μl of 1.000 ± 0.005M HCl and 2μl of Annealing Buffer. Remove the tube briefly and vortex gently.

• Immediately return the tube to 37°C and incubate for an additional 10 minutes.

• Place at room temperature for 5 minutes, then centrifuge briefly.

• Proceed immediately with the sequencing reactions, Procedure D. (It is better to use freshly denatured and annealed primer/template, rather than to store the solution at room temperature or -20°C prior to use.)

Procedure C: Standard Annealing of Primer to Double-Stranded Template

• Adjust the concentration of the template so that 32μl contain 1.5-2μg.

• To denature the double-stranded template, add the following to a 1.5ml microcentrifuge tube:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>32μl</td>
</tr>
<tr>
<td>2M NaOH</td>
<td>8μl</td>
</tr>
<tr>
<td>Total Volume</td>
<td>40μl</td>
</tr>
</tbody>
</table>

• Vortex the tube gently, then centrifuge briefly. Incubate at room temperature for 10 minutes.

• Add 7μl of 3M sodium acetate (pH 4.8) and 4μl of distilled water.

• Add 120μl of 100% ethanol, mix, and place on Dry Ice for 15 minutes. Collect the precipitated DNA by centrifuging for 15 minutes. Carefully remove and discard the supernatant, then gently wash the pellet with ice-cold 70% ethanol. Recentrifuge for 10 minutes, and remove the supernatant. Dry the pellet briefly under vacuum, and redissolve it in 10μl of distilled water.

• With the Universal Primer, use 2μl of undiluted stock. If using a primer other than the Universal Primer, adjust its concentration to 2.5-5μM (2μl should contain 5-10pmol); for a 17-base primer, this would equal 15-30μg/ml.
• Add Primer and Annealing Buffer to the resuspended template, as indicated below:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template DNA</td>
<td>10 µl</td>
</tr>
<tr>
<td>Primer</td>
<td>2 µl</td>
</tr>
<tr>
<td>Annealing Buffer</td>
<td>2 µl</td>
</tr>
<tr>
<td>Total Volume</td>
<td>14 µl</td>
</tr>
</tbody>
</table>

• Vortex the tube gently, then centrifuge briefly. Incubate at 65°C for 5 minutes.

• Quickly transfer the tube to a 37°C water bath and incubate for 10 minutes. Place at room temperature for at least 5 minutes, then centrifuge briefly.

• Proceed immediately to the sequencing reactions, Procedure D. (It is better to use freshly denatured and annealed primer/template, rather than to store the solution at room temperature or -20°C prior to use.)

Procedure D: Sequencing Reactions

Essential Preliminaries

• Choice of Labeling Mix: With an unlabeled primer, use Labeling Mix-dATP with \([\alpha-^{33}P]dATP\), \([\alpha-^{32}P]dATP\) or \([\alpha-^{35}S]dATP\) and Labeling Mix-dCTP with \([\alpha-^{33}P]dCTP\), \([\alpha-^{32}P]dCTP\) or \([\alpha-^{35}S]dCTP\).

• Label four microcentrifuge tubes ‘A’, ‘C’, ‘G’ and ‘T’ respectively.

• To “Read Short” (up to 500 nucleotides with \(^{33}P\), \(^{32}P\) or \(^{35}S\)): Pipette 2.5 µl respectively of the ‘A’ Mix-Short, ‘C’ Mix-Short, ‘G’ Mix-Short and ‘T’ Mix-Short into the corresponding tube.

• To “Read Long” (50-1000 nucleotides with \(^{32}P\), 100-1000 nucleotides with \(^{35}S\); see page 9): Pipette 2.5 µl respectively of the ‘A’ Mix-Long, ‘C’ Mix-Long, ‘G’ Mix-Long and ‘T’ Mix-Long into the corresponding tube.

• Using cold Enzyme Dilution Buffer, dilute enough of the stock T7 DNA Polymerase* for your immediate needs using the table provided opposite. Two microliters of diluted T7 DNA Polymerase will be required for each template to be sequenced. Mix by gentle pipetting and keep on ice until required.

*NOTE: For maximum stability, remove the stock of T7 DNA Polymerase from storage at -20°C only momentarily to remove an aliquot.
<table>
<thead>
<tr>
<th>Number of Templates</th>
<th>Volume of T7 DNA Polymerase</th>
<th>Volume of Dilution Buffer</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.0μl</td>
<td>4.0μl</td>
<td>5.0μl</td>
</tr>
<tr>
<td>3</td>
<td>1.5μl</td>
<td>6.0μl</td>
<td>7.5μl</td>
</tr>
<tr>
<td>4</td>
<td>2.0μl</td>
<td>8.0μl</td>
<td>10.0μl</td>
</tr>
<tr>
<td>5</td>
<td>2.5μl</td>
<td>10.0μl</td>
<td>12.5μl</td>
</tr>
<tr>
<td>6</td>
<td>3.0μl</td>
<td>12.0μl</td>
<td>15.0μl</td>
</tr>
<tr>
<td>7</td>
<td>3.5μl</td>
<td>14.0μl</td>
<td>17.5μl</td>
</tr>
<tr>
<td>8</td>
<td>4.0μl</td>
<td>16.0μl</td>
<td>20.0μl</td>
</tr>
<tr>
<td>9</td>
<td>4.5μl</td>
<td>18.0μl</td>
<td>22.5μl</td>
</tr>
<tr>
<td>10</td>
<td>5.0μl</td>
<td>20.0μl</td>
<td>25.0μl</td>
</tr>
<tr>
<td>11</td>
<td>5.5μl</td>
<td>22.0μl</td>
<td>27.5μl</td>
</tr>
<tr>
<td>12</td>
<td>6.0μl</td>
<td>24.0μl</td>
<td>30.0μl</td>
</tr>
</tbody>
</table>

Labeling Reaction

- To the tube containing the annealed template and primer (from Procedures A, B or C), add the following:

 Annealed template/primer 14-15μl
 Labeling Mix 3μl
 Labeled dNTP 1μl
 Diluted T7 DNA Polymerase 2μl

 Total Volume 20-21μl

- Mix the components by gentle pipetting, and collect the contents at the bottom of the tube by a brief centrifugation. Incubate at room temperature for 5 minutes.

- While this incubation is in progress, warm the four sequencing mixes just dispensed by placing the microcentrifuge tubes or at 37°C for at least 1 minute.

- After the 5-minute incubation of the labeling reaction, proceed immediately to the termination reactions.

Termination Reactions

- After the labeling reaction has been incubated for 5 minutes, transfer 4.5μl of this reaction into each of the four pre-warmed sequencing mixes, using a fresh pipette tip for each transfer. Mix the components by gentle pipetting. Incubate at 37°C for 5 minutes.

- Add 5μl of Stop Solution to each tube, and mix gently. Spin briefly to collect the contents at the bottom.
• Transfer an aliquot (approximately 3μl) of each stopped reaction to a separate microcentrifuge tube, then heat it at 75-80°C for 2 minutes. Immediately load 1.5-2μl of each heated sample into the appropriate well of a sequencing gel.

• Store the remaining material at -20°C. If further aliquots are to be loaded (e.g. if there is a problem with the gel and it must be rerun), remove the samples from the freezer several minutes in advance, take aliquots (approximately 3μl), and heat them at 75-80°C for 2 minutes. Load 1.5-2μl of each as before.

Appendix 1: Additional Reagents Required

For culturing recombinant microorganisms (Appendix 2):

- **M9 minimal medium agar**: Prepare a 5X M9 salt solution by dissolving 64g of Na₂HPO₄·7H₂O, 15g of KH₂PO₄, 2.5g of NaCl and 5.0g of NH₄Cl in deionized water to a final volume of 1 liter. Divide the solution into 200ml aliquots and sterilize by autoclaving. Prepare the following and autoclave simultaneously: 750ml of deionized water containing 15g of agar; 100ml of deionized water; a 1M MgCl₂ solution; and a 1M CaCl₂ solution. Prepare a 20% (w/v) solution of glucose and a 1M solution of thiamine-HCl and sterilize both by filtration. After sterilizing the agar solution, cool to 50°C. Add 200ml of the 5X M9 salt solution and sterile water to a final volume of 1 liter. Add 1ml of 1M MgCl₂, 1ml of 1M CaCl₂, 1ml of 1M thiamine-HCl and 20ml of 20% glucose.

- **2X YT medium**: Dissolve 16g of Bactotryptone, 10g of yeast extract and 5g of NaCl in 1 liter of distilled water. Mix and autoclave.

- **LB medium**: Dissolve 10g of Bactotryptone, 5g of yeast extract and 10g of NaCl in 1 liter of distilled water. Mix and autoclave.

- **Plating agar**: Add 6g of agar to 1 liter of LB medium. Mix and autoclave.

- **LB agar**: Add 15g of agar to 1 liter of LB medium. Mix, autoclave, cool to 50-55°C and pour plates.

- **Ampicillin**: Dissolve 100 mg of the sodium salt of ampicillin in 4ml of distilled water. Sterilize by filtration and store in aliquots at -20°C.

- **Kanamycin**: Dissolve 280 mg of kanamycin in 4ml of distilled water. Sterilize by filtration and store in aliquots at -20°C.

For DNA template isolation (Appendices 3 and 4):

- **3.5M ammonium acetate (pH 7.4)/20% polyethylene glycol**: Aqueous solution.

- **Phenol**: Redistilled phenol saturated with TE buffer containing 8-hydroxy quinoline (3).
• **Chloroform/isoamyl alcohol**: Reagent-grade chloroform and isoamyl alcohol, mixed 24:1.

• **Phenol/chloroform**: Equal parts of redistilled phenol and chloroform/isoamyl alcohol (24:1), each prepared as described above.

• **3M sodium acetate (pH 7.5)**: Aqueous solution.

• **Tris buffer**: 10mM Tris-HCl (pH 7.5).

• **TE buffer**: 10mM Tris-HCl (pH 7.5), 1mM EDTA.

• **Solution I**: 100mM Tris-HCl (pH 7.5), 10mM EDTA, 400µg of heat-treated RNase I/ml.

• **Solution II**: 0.2M NaOH, 1% (w/v) SDS.

• **Solution III**: 3M potassium, 5M acetate. To prepare 100ml, mix 60ml of 5M potassium acetate, 11.5ml of glacial acetic acid and 28.5ml of distilled water.

For quick denaturation of double-stranded templates (Procedure B):

• $1.000 \pm 0.005M \text{ NaOH}.$

• $1.000 \pm 0.005M \text{ HCl}.$

For standard denaturation of double-stranded templates (Procedure C):

• **2M NaOH**: Aqueous solution.

• **3M sodium acetate (pH 4.8)**: Aqueous solution.

For sequencing reactions (Procedure D):

• $[\alpha-^{32}\text{P}]\text{dATP}/[\alpha-^{32}\text{P}]\text{dCTP}$: 10mCi/ml, 3000 Ci/mmol, $[\alpha-^{33}\text{P}]\text{dATP}/[\alpha-^{33}\text{P}]\text{dCTP}$: 10mCi/ml or $[\alpha-^{35}\text{S}]\text{dATP}\alpha\text{S}/[\alpha-^{35}\text{S}]\text{dCTP}\alpha\text{S}$: 10mCi/ml, >1000 Ci/mmol.

For gel electrophoresis (Appendix 6):

• **Ammonium persulfate.**

• **TEMED.**

• **20% acrylamide solution**: Dissolve 193g of acrylamide, 6.7g of N,N’-methylenebisacrylamide, and 467g of urea (ultrapure) in distilled water to a final volume of 1 liter. Add 20-30g of mixed bed resin (1:1 mixture of strong cation and anion exchange resin). Stir for 30 minutes. Filter and store at room temperature.

• **RapidGels™-ready-to-use acrylamide gel solutions** (see Related Products Section)

• **46.7% urea solution**: Dissolve 467g of urea (ultrapure) in distilled water to a final volume of 1 liter. Add 20-30g of mixed bed resin. Stir for 30 minutes. Filter and store at room temperature.

• **10X TBE buffer**: Dissolve 121g of Tris base, 7.4g of EDTA and 53.4g of boric acid in distilled water to a final volume of 1 liter. Check the pH, which should be 8.3.
Appendix 2: Culture of Recombinant Phage

The DNA to be sequenced should be cloned into an M13 or phagemid vector using standard procedures (3). M13 clones should be cultured according to the first procedure below, phagemids according to the second.

Culture of M13 Recombinants

This procedure requires freshly grown M13 plaques, and *E. coli* cells which have been streaked out on minimal medium.

- Pick a single *E. coli* colony into 3ml of LB medium. Incubate with shaking at 37°C and grow until the A_{600} reaches 0.8-1.0.
- Transfer 200µl of this culture into a tube containing 2ml of 2X YT medium. Inoculate with a single colorless M13 plaque. Shake vigorously at 37°C for at least 5 hours, but no more than 8 hours.
- Remove all cells from the culture by two rounds of centrifugation. Carefully transfer the supernatant from the second round to a clean tube.
- At this point the clarified supernatant can be stored at 4°C before proceeding with the isolation of single-stranded DNA.

Culture of Phagemid Recombinants

This procedure requires single colonies containing recombinant phagemids, a stock of M13KO7 helper phage, and both LB and 2X YT media with ampicillin at 100µg/ml.

- Pick a single phagemid colony into a tube containing 2ml of LB/ampicillin medium. Incubate overnight at 37°C.
- Transfer 50µl of this culture into a 50ml culture tube containing 1ml of 2X YT/ampicillin medium. Incubate at 37°C for 1-2 hours, until the A_{600} reaches 0.5-1.0.
- Assuming that an A_{600} of 1 is equivalent to 8×10^8 cells/ml, add M13KO7 helper phage to a multiplicity of infection of 10. For example, if the phagemid culture has an A_{600} of 0.8, add 6.4×10^8 helper phage, or 128µl from a stock at 5×10^{10} pfu/ml.
- Incubate with vigorous aeration at 37°C for 1 hour, then add 9ml of 2X YT broth and 10µl of kanamycin solution (70µg/ml). Continue incubation at 37°C with rapid shaking for 5-6 hours.
- Remove all cells from the culture by two rounds of centrifugation. Carefully transfer the supernatant from the second round to a clean tube.
- At this point the clarified supernatant can be stored at 4°C before proceeding with the isolation of single-stranded DNA.
Appendix 3: Isolation of Single-Stranded Template

- To precipitate phage, add 0.25 volume of a 3.5M ammonium acetate/20% polyethylene glycol solution, invert several times to mix, and place on ice for 30 minutes.
- To collect precipitated phage, centrifuge for 15-30 minutes at 11,000 x g. Check for a visible white phage pellet and carefully remove the supernatant. Drain thoroughly, then remove any excess liquid by aspiration.
- Resuspend the pellet in TE buffer (100μl for M13 pellets, 400μl for phagemids), with gentle vortexing. All subsequent steps can be performed in microcentrifuge tubes.
- Add an equal volume of phenol/chloroform and vortex for 30 seconds. Centrifuge for 1 minute to separate the phases. Carefully remove the upper aqueous layer and transfer it to a clean tube. Repeat the extraction, and again recover and transfer the aqueous phase.
- Extract with an equal volume of chloroform, separate the phases by centrifugation, and transfer the upper phase to a clean tube. Repeat this extraction and recovery once.
- Add 0.1 volume of 3M sodium acetate (pH 7.5) and two volumes of 100% ethanol, mix and place on dry ice for 15 minutes. Pellet the DNA by centrifugation for 10 minutes in a microcentrifuge. Remove the supernatant. Add 1ml of ice-cold 70% ethanol and recentrifuge. Remove the supernatant and briefly dry the pellet under vacuum.
- Dissolve the DNA pellet in 20μl of Tris buffer and store at -20°C. The A_{260}/A_{280} ratio should be at least 1.7 for DNA sequencing.

Appendix 4: Isolation of Double-Stranded Template

A procedure for purifying double-stranded DNA is described below. See Appendix 1, page 19, for required reagents.

- Transfer 1.5ml of an overnight culture of E. coli to a microcentrifuge tube and centrifuge at full speed for 30 seconds to pellet the cells.
- Remove the supernatant by aspiration without disturbing the cell pellet, leaving the pellet as dry as possible.
- Resuspend the pellet in 200μl of Solution I by vigorously vortexing.
- Add 200μl of Solution II and mix by inverting the tube several times. Incubate at room temperature for 5 minutes.
- Add 200μl of Solution III and mix by inverting the tube several times. Place on ice for 5 minutes.
- Centrifuge at full speed for 5 minutes at room temperature.
- Carefully decant the supernatant into a clean centrifuge tube.
- Add 420μl (0.7 volume) of ambient-temperature isopropanol to the supernatant and vortex to mix. Incubate for 5 minutes at room temperature.
• Centrifuge at full speed for 10 minutes. Decant the supernatant and invert the tube to drain.
• Resuspend the DNA pellet in 200μl of TE buffer by vortexing.
• Add 200μl of phenol to the aqueous sample. Vortex for 1 minute and centrifuge for 5 minutes at full speed to separate the phases.
• Transfer the upper aqueous phase to a fresh tube and add 200μl of chloroform/isoamyl alcohol. Vortex for 1 minute, then centrifuge for 5 minutes at full speed to separate the phases.
• Transfer the upper aqueous phase to a fresh tube and add 20μl of 3M sodium acetate and 500μl of absolute ethanol. Mix and place at -20°C for 10 minutes.
• Centrifuge at 4°C for 10 minutes, remove the supernatant, and wash the pellet with 1ml of 70% ethanol.
• Recentrifuge for 2 minutes, drain thoroughly, and dry the DNA pellet under vacuum.
• Dissolve the DNA pellet in 20μl of TE buffer and proceed immediately with denaturing (Procedure B or C) or store at -20°C for later use.

Appendix 5. Reducing the Amount of Template and Labeled Nucleotide

Procedure D has been developed to give optimum performance with minimum exposure times and even band intensities. All of the required reagents except the template and labeled nucleotide are provided in the kit. In cases where the template is available in limited quantity or labeled nucleotide is at a premium, the amounts of these reagents can be reduced with some sacrifice in performance.

Template

Using the kit, the best sequencing results are achieved with 2μg (~1pmol) of template. Decreasing the amount of template below this level produces a “two-tone effect” on the autoradiograph, with bands representing chain-terminated fragments less than 50 bases in length reduced in intensity by about one-half. This effect is caused by a reduction in the concentration of the primer/template complex relative to that of the nucleotides in the labeling reaction. By decreasing the nucleotide concentrations in the labeling reaction, even band patterns may be obtained from reactions using as little as 0.5μg of template, with some extension of exposure time.

Options:
• Follow the instructions in Procedure D using less than 2μg of template and accept a two-tone effect on the autoradiograph. If the sequence less than 50
bases from the primer is not legible, increase the gel exposure time by a factor of two.

- To restore even band intensities for reactions using less than 2µg of template, dilute the labeling mix by a factor of four with 330mM NaCl. This will eliminate the two-tone effect but will also increase the exposure time by a factor of two, requiring overnight exposure. (This dilution step is recommended for use only when 32P is the label.)

Labeled Nucleotide

If the cost of the labeled nucleotide is critical, amounts can be reduced provided longer autoradiographic exposure times are acceptable.

Option:

- Use 3-5µCi of [α-32P]dATP/$[\alpha$-32P]dCTP in Procedure D and increase the gel exposure time by a factor of two. Generally, legible autoradiographs can be obtained overnight (16 hrs).

Since 35S-gels require a minimum of overnight exposure, we do not recommend reducing the amount of [α-35S]dATP/$[\alpha$-35S]dCTP used in Procedure D.

Appendix 6: Electrophoresis

To increase the amount of information obtained from each set of sequencing reactions, two or three separate samples from each reaction should be electrophoresed on the same sequencing gel, with a period of electrophoresis between loadings. Each loading should yield up to 200 nucleotides of sequence. When planning your gel requirements, remember that for this approach you will need to allocate four adjacent lanes for each loading, or 8-12 lanes per set of reactions.

The following general protocol is provided for the preparation and use of 8% polyacrylamide wedge gels. Wedge gels can increase the number of readable bands on a DNA sequencing gel by compressing the normally more widely spaced smaller sequencing fragments.

- Clean the glass gel plates with soap, rinse them thoroughly with water, and dry them. Rinse with ethanol and dry.
- Arrange the glass plates for assembly, with the Silane-treated sides of the plates facing inward, and with the bottom edges of the plates slightly offset. Insert 0.2mM (top)-0.4mM (bottom) wedge spacers between the long edges of the plates. Alternatively, use uniform 0.2mM spacers, and insert an extra piece of the same material, 2cm long, at the bottom of the long edges on each side. If the plates are to be clamped together, place a thin bead of petroleum jelly between the plates and the spacers before clamping.
- Tape or clamp the plates together.
• Insert the sample application comb at the top of the plates, or the surface-former if a shark’s-tooth comb is to be used. Set the plates at a 45° angle with the bottom of the plates elevated so that the polymerizing solution can be introduced from this end.

• Mix 20ml of 20% acrylamide solution, 5ml of 10X TBE buffer, and 25ml of 46.7% urea solution (total = 50ml; 8% acrylamide).

• Filter the mixture and degas under low vacuum for 5 minutes.

• To initiate gel formation, add 250μl of 10% ammonium persulfate and 50μl of TEMED to the mixture, and swirl to mix.

• Immediately pour the solution into a 50ml syringe while blocking the spout. Insert the plunger into the syringe, invert, fit with an 18-gauge needle, and eject any air. Inject the solution between the plates, taking care to avoid introducing air bubbles. Any bubbles which do form can be dislodged by standing the plates upright (bottom uppermost), and tapping gently. Insert comb.

• After pouring the gel, lay the plates in a horizontal position for 45-60 minutes to allow the gel to polymerize.

• Wet the area around the sample comb or surface former with distilled water, and carefully remove the comb or former. Immediately rinse the sample wells or surface with distilled water, to remove unpolymerized acrylamide.

• Place the gel in the electrophoresis apparatus and add buffer, making sure that the sample wells are filled with buffer and free of air bubbles.

• Pre-run the gel at 40 W constant power for 45-60 minutes.

• If using a shark’s-tooth comb, switch off the power supply and insert the comb several minutes prior to denaturing the samples. Insert it so that the points just touch the surface of the gel. Reconnect the gel to the power supply.

• After the gel has pre-electrophoresed and the samples are denaturing, switch off the power supply and wash out the wells with buffer. (NOTE: If this wash is omitted, loading will be difficult, and the bands may smear.) Load 1.5-2μl aliquots of denatured sequencing reactions (from Procedure D) into adjacent wells, in sets of four. If you will be running multiple samples from each set of sequencing reactions, remember to allocate four lanes of the gel for each loading.

• Reconnect the gel to the power supply and electrophorese at 40 W constant power. If you plan to load additional samples of the same sequencing reactions, continue electrophoresis until the xylene cyanol in the most recently loaded set is 4-5cm from the bottom of the gel (about 2 hours for a 40cm gel). At this point, switch off the power, wash out the wells in an adjacent group of four empty lanes, load the next set of samples, and continue electrophoresis as before.
• Stop the final period of electrophoresis when the bromophenol blue in the samples loaded last reaches the bottom of the gel.

Appendix 7: Autoradiography and Analysis

• Switch off the power, then remove the gel/plate assembly from the electrophoresis apparatus. Lay the assembly in a horizontal position with the notched plate uppermost. Carefully separate the plates so that the gel remains attached to one of them.

• *For a gel containing* ^{32}P:

To dry the gel (optional): Transfer it carefully to a supporting sheet of filter paper. Cover with high-quality plastic wrap, and dry using a vacuum gel dryer.

For an undried gel: Transfer the gel to a support (e.g. an old X-ray film) and cover it with high-quality plastic wrap. Fold the plastic wrap around the edges of the support.

In a darkroom, place the covered gel/support in a film cassette with an appropriately sized sheet of X-ray film next to the gel. Expose for 4-16 hours at $-70^\circ C$ (undried gel) or room temperature (dried gel), then develop the film according to the manufacturer’s instructions.

• *For a gel containing* ^{35}S or ^{33}P:

Place the gel/plate in a suitable tray containing 1-2 liter of 10% acetic acid/10% methanol in distilled water. Allow the gel to soak for 20 minutes. Remove the solution by aspiration, taking particular care if the gel has become detached from the plate. Reposition the gel on the glass plate if necessary, then transfer it carefully to a supporting sheet of filter paper. Cover with high-quality plastic wrap, and dry using a vacuum gel dryer.

When the gel is dry, carefully remove the plastic wrap and transfer the gel, on its filter-paper support, to a film cassette. In a darkroom, place an appropriately sized sheet of X-ray film next to the gel. Expose overnight at room temperature, then develop the film according to the manufacturer’s instructions.

Read the sequence of the target DNA from the pattern of bands on the autoradiograph. To help locate the start of the target sequence, identify any known sequence between it and the primer site, such as the polylinker sequence in an M13-related vector. If multiple samples were loaded from a single set of reactions, look for overlaps of at least 20 bands between the patterns from successive sets of samples. With this approach, it should be possible to read at least 600 nucleotides from each set of reactions.
“Band compressions” mask the correct sequence in a particular region of the gel

- Fragments differing in size by one or a few nucleotides migrated with similar mobilities, because residues had formed stable intrastrand secondary structures which were not fully denatured during electrophoresis. Repeat the sequencing reactions with analogues less able to form intrastrand base pairs. Deaza G/A T7 Sequencing Mixes (27-1686-01) are designed for this purpose. Two purine analogues, 7-deaza dGTP and 7-deaza dATP, are combined in one set of mixes to eliminate the majority of compressions.

Bands within 50 bases of the primer are faint, creating a “two-tone effect”

- The template:nucleotide ratio in the labeling reaction was too low, resulting in the synthesis of longer labeled fragments. This reduces the relative number of smaller chain-terminated fragments, producing weaker band intensities in the lower section of the gel. Increase the amount of template and primer by a factor of two. Alternatively, decrease the nucleotide concentration in the labeling reaction (see Appendix 5).

Band intensities in the uppermost portion of the sequence pattern are very light, creating a “two-tone effect”

- A high concentration of protein in the electrophoresis sample may have affected the band pattern. Decrease the amount of enzyme added to the sequencing reactions by a factor of two. Caution: Using too little enzyme per set of reactions may cause the appearance of parallel bands in sequencing autoradiographs.

The pattern is distorted in the 400-600 base region

- The concentration of glycerol in the electrophoresis sample was too high. Dilute the enzyme in TE buffer instead of dilution buffer and then repeat the sequencing reactions. Alternatively, use a Glycerol Tolerant Gel (see Related Products Section) to resolve bands in this region.

Specific bands are very light in intensity or missing

- Certain chain-terminated fragments may be susceptible to attack by inorganic diphosphate generated during formation of the 5’-3’ bond. This attack cleaves the ddNTP molecule from the end of the fragment and regenerates the triphosphate group on the remaining base, allowing further extension of the fragment by the polymerase. This phenomenon may often be reduced by limiting the time of the termination reactions to 2-3 minutes. Alternatively, inorganic pyrophosphatase may be used.
Parallel bands are present in all four lanes above 200 bases from the primer

• The enzyme activity may have been reduced if reaction temperatures above 37°C were used. Make sure that the temperature of the termination reaction is 37°C.
• The enzyme may have lost activity. Increase the amount of enzyme in the reaction two-fold.
• The template may have strong secondary structures that cause the polymerase to pause. Following the annealing step, incubate the primer/template solution at 60-70°C for 4 minutes, return the solution to room temperature for 2 minutes and then immediately proceed to the labeling reaction.

Sequencing “troublesome” double-stranded templates

• When sequencing troublesome double-stranded templates, it may help to include dimethyl sulfoxide (DMSO) in the annealing reaction. Prepare the template again so that 7µl contains 1.5-2µg of denatured double-stranded template. Modify the annealing reaction (page 15) as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denatured template</td>
<td>7µl</td>
</tr>
<tr>
<td>Primer</td>
<td>2µl</td>
</tr>
<tr>
<td>Annealing Buffer</td>
<td>2µl</td>
</tr>
<tr>
<td>DMSO</td>
<td>3µl</td>
</tr>
</tbody>
</table>

Total Volume 14µl

• Incubate at 37°C for 20 minutes to anneal the primer.
• Place the tube at room temperature for at least 10 minutes, then centrifuge it briefly.
• Proceed with the sequencing reactions, Procedure D. (It is better to use freshly denatured and annealed primer/template, rather than to store the solution at room temperature or -20°C prior to use.)

REFERENCES

RELATED PRODUCTS

Sequencing kits

<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Pack size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequenase™ PCR™ Product Sequencing Kit</td>
<td>For rapid sequencing of PCR products</td>
<td>100 templates</td>
<td>70170</td>
</tr>
<tr>
<td>Sequenase Quick-Denature Plasmid Sequencing Kit</td>
<td>For rapid denaturation and sequencing of plasmid DNA</td>
<td>100 templates</td>
<td>70140</td>
</tr>
<tr>
<td>Thermo Sequenase™ Cycle Sequencing Kit</td>
<td>For radioactive cycle sequencing</td>
<td>100 templates</td>
<td>78500</td>
</tr>
<tr>
<td>Thermo Sequenase Radiolabeled Terminator Cycle Sequencing Kit</td>
<td>For radioactive terminator cycle sequencing</td>
<td>50 templates 100 templates</td>
<td>79750 79760</td>
</tr>
</tbody>
</table>

Sequencing enzymes

<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Pack size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequenase Version 2.0 DNA polymerase</td>
<td>For non-cycle radioactive sequencing</td>
<td>200 units 1000 units</td>
<td>70775Y 70775Z</td>
</tr>
</tbody>
</table>

USB Ultrapure reagents for DNA sequencing

<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Pack size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose, high efficiency separation >1000bp</td>
<td></td>
<td>25g 100g</td>
<td>10132-25g 10132-100g</td>
</tr>
<tr>
<td>Agarose, high efficiency separation >500bp</td>
<td></td>
<td>25g 100g</td>
<td>10133-25g 10133-100g</td>
</tr>
<tr>
<td>Ammonium Persulfate</td>
<td>Gel electrophoresis</td>
<td>1kg 100g</td>
<td>76322-1kg 76322-100g</td>
</tr>
<tr>
<td>Antibiotic G418</td>
<td>Cloning</td>
<td>5g 1g 500mg 100mg</td>
<td>11379-5g 11379-1g 11379-500mg 11379-100mg</td>
</tr>
<tr>
<td>Glycerol Tolerant Gel Buffer, pre-mixed powder</td>
<td>Gel electrophoresis</td>
<td>6 bottles</td>
<td>71949</td>
</tr>
<tr>
<td>IPTG</td>
<td>Cloning</td>
<td>1g 1g</td>
<td>10078-1g 10078-5g</td>
</tr>
<tr>
<td>LB Broth</td>
<td>Cloning</td>
<td>250g 1kg</td>
<td>75852-250g 75852-1kg</td>
</tr>
<tr>
<td>LB Agar</td>
<td>Cloning</td>
<td>250g 1kg</td>
<td>75851-250g 75851-1kg</td>
</tr>
<tr>
<td>Mineral Oil</td>
<td>Sequencing/PCR</td>
<td>10ml 25ml 1 liter</td>
<td>71600-10ml 71600-25ml 71600-1l</td>
</tr>
</tbody>
</table>
USB Ultrapure reagents for DNA sequencing continued...

<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Pack size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RapidGel™-6%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75843-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75843-500ml</td>
</tr>
<tr>
<td>RapidGel-8%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75844-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75844-500ml</td>
</tr>
<tr>
<td>RapidGel-GTG-6%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75846-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75846-500ml</td>
</tr>
<tr>
<td>RapidGel-GTG-8%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75847-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75847-500ml</td>
</tr>
<tr>
<td>RapidGel-40%</td>
<td>Gel electrophoresis</td>
<td>500ml</td>
<td>75848-500ml</td>
</tr>
<tr>
<td>RapidGel-XL-6%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75861-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75861-500ml</td>
</tr>
<tr>
<td>RapidGel-XL-8%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75862-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75862-500ml</td>
</tr>
<tr>
<td>RapidGel-XL-40%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75863-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75863-500ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>Gel electrophoresis</td>
<td>100g</td>
<td>76320-100g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500g</td>
<td>76320-500g</td>
</tr>
<tr>
<td>TBE Buffer, 10X</td>
<td>Gel electrophoresis</td>
<td>6 bottles</td>
<td>70454-1pk</td>
</tr>
<tr>
<td>Water, RNase-free</td>
<td>Gel electrophoresis</td>
<td>500ml</td>
<td>70783-500ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 liter</td>
<td>70783-1l</td>
</tr>
<tr>
<td>X-Gal</td>
<td>Cloning</td>
<td>100mg</td>
<td>10077-100mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250mg</td>
<td>10077-250mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1g</td>
<td>10077-1g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2g</td>
<td>10077-2g</td>
</tr>
</tbody>
</table>
USB CORPORATION

USA
Cleveland, Ohio
(800) 321-9322
www.usbweb.com

USB Authorized Distributor: Amersham Pharmacia Biotech

Asia Pacific
Tel: +852 2811 8693

Australia
Tel: +61 2 9894 5188

Austria
Tel: 01 576 0616 10

Belgium
Tel: 0800 73888

Canada
Tel: 1 800 463 5800

Central and East Europe
Tel: +43 1 982 3826

Denmark
Tel: +45 4516 2400

Finland
Tel: 358 (9) 512 3940

Former Soviet Union
Tel: +7 (095) 232 0250

France
Tel: 0169 18 28 00

Germany
Tel: 07 61 49 03 0

Italy
Tel: 02 27322 1

Japan
Tel: 81 3 5331 9337

Latin America
Tel: +55 11 3667 5700

Middle East and Africa
Tel: +30 (1) 96 00 687

Netherlands
Tel: 0165 580 410

Norway
Tel: 63 89 23 10

Portugal
Tel: 01 417 70 35

South East Asia
Tel: 60 3 724 2080

South East Europe
Tel: +43 (1) 982 3826

Spain
Tel: 935 944 950

Sweden
Tel: 018 164000

Switzerland
Tel: 01 802 81 50

UK
Tel: 0800 515313

USA
Tel: 1 800 526 3593
Material Safety Data Sheet

Revision: 05/05/99

Hazard information is provided for compliance with both the UK Chemicals (Hazard Information and Packaging) (CHIP) Regulations and the US Hazard Communication Standard (HCS)

IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND COMPANY

PRODUCT NAME Stop Solution (in T7 Sequencing Kit 27168201)

PRODUCT CODE 1682H

EEC NUMBER None

SUPPLIER:
USB Corporation
26111 Miles Road
Cleveland, Ohio 44128 (216) 765-5000

EMERGENCY CONTACT:
Chemtrec: 1-800-424-9300
Outside USA & Canada 703-527-3887

COMPOSITION/HAZARDOUS COMPONENTS

HAZARD Formamide

CAS NO. 75-12-7

%WT 97.5%

TLV 10ppm (AcGIH)

CHIP R & S PHRASES R:62 Possible risk of impaired fertility
 R:63 Possible risk of harm to the unborn child
 S:24/25 Avoid contact with skin and eyes

HAZARDS IDENTIFICATION

CHIP
Formamide: Toxic to reproduction, Category 3

HCS
Formamide: Teratogen.

FIRST-AID MEASURES

Remove from exposure. Flush from skin or eyes with water. If irritation is evident or if ingested or inhaled, seek medical advice.

FIRE-FIGHTING INFORMATION

For small fires only: Use carbon dioxide, dry powder or foam. Flash Point=310°F. Fire or excessive heat may produce hazardous oxides of carbon and nitrogen.
ACCIDENTAL RELEASE MEASURES
Wear suitable protective clothing including lab coat, safety glasses and gloves to clean small releases.

HANDLING AND STORAGE
Wear suitable protective clothing including lab coat, safety glasses and gloves. Store at -20°C.

PERSONAL PROTECTION
Pregnant women or women of child bearing age should minimize contact and exposure to formamide.

PHYSICAL AND CHEMICAL PROPERTIES
Kit containing vials of solutions.
Colorless liquid. Faint odor of ammonia. Soluble in water.
Boiling Point=210°C
Melting Point=3°C
Density=1.13
Vapor Density=1.55 (Air=1)
Specific Gravity=1.13
Flash Point=310°F

STABILITY AND REACTIVITY
Product is stable. Fire or excessive heat may produce hazardous oxides of carbon and nitrogen.

TOXICOLOGICAL INFORMATION
Formamide has caused embryotoxicity and birth defects in animal studies; may cause damage to liver and denatures proteins; may be absorbed through the skin.

ECOLOGICAL INFORMATION
No information available

DISPOSAL CONSIDERATIONS
Dispose of material in accordance with applicable local, state, federal regulations.

This data sheet is based upon information believed to be reliable. The company makes no statement or warranty as to the accuracy or completeness of the information contained herein which is offered for your consideration, investigation and verification. Any use of the information contained in this data sheet must be determined by the user to be in accordance with appropriate applicable regulations.
All goods and services are sold subject to the terms and conditions of sale of the company within the USB Corporation or the group that supplies them. A copy of these terms and conditions of sale is available on request.

NOTICE TO PURCHASERS
This kit is sold pursuant to a limited sublicense from United States Biochemical Corporation under U.S. Patent Nos. 4,795,699; 4,942,130; 4,946,786; 4,962,020; 4,994,372 and 5,173,411 and corresponding foreign patents and patent applications. The purchase of this kit includes a limited nonexclusive sublicense (without the right to resell, repackage or further sublicense) under such patent rights to use the kit for manual DNA sequencing. No license under the above-recited patents is hereby granted for use of this kit within the United States. Such sublicense is granted solely for research and legally approved uses. No other license under the above-recited patents is granted expressly, impliedly, or by estoppel.

RapidGel, Sequenase, Thermo Sequenase and T7 Sequencing are trademarks of Amersham Pharmacia Biotech Limited or its subsidiaries.
Glycerol Tolerant Gel Buffer: Purchase includes a non-exclusive sublicense for use under U.S. Patent 5,314,595. No other license is granted.
Amersham is a trademark of Nycomed Amersham plc
Pharmacia is a trademark of Pharmacia & Upjohn, Inc.
∼The Polymerase Chain Reaction (PCR) is covered by patents owned by Roche Molecular Systems and F. Hoffmann-La Roche Ltd.
USB and logo design are trademarks of USB Corporation.
©USB Corporation 2000-All rights reserved.

Printed in the United States

USB Corporation
26111 Miles Road
Cleveland, Ohio 44128
USA
www.usbweb.com 00-271682/00/07