Sequenase
7-deaza-dGTP
Sequencing Kit

Product number 70990
100 reactions

STORAGE
Store at -15°C to -30°C.
Warning: For research use only. Not recommended or intended for diagnosis of disease in humans or animals. Do not use internally or externally in humans or animals.
COMPONENTS OF THE KIT

The solutions included in the Sequenase™ 7-deaza-dGTP Sequencing Kit from USB® have been carefully prepared using qualified nucleotides to yield the best possible sequencing results. Each reagent has been tested extensively to meet USB standards. It is strongly recommended that the reagents supplied in the kit be used.

This kit contains the following reagents:

Sequenase Version 2.0 DNA polymerase (blue-capped tube), 25μl;
13U/μl in 20mM KPO₄, pH 7.4, 1mM dithiothreitol (DTT), 0.1mM EDTA, 50% glycerol

Inorganic Pyrophosphatase (purple-capped tube), 25μl;
4U/ml in 10mM Tris·HCl, pH 7.5, 0.1mM EDTA, 50% glycerol

Enzyme Dilution Buffer, 1ml; 10mM Tris·HCl, pH 7.5, 5mM DTT

Glycerol Enzyme Dilution Buffer (pink-capped tube), 250μl;
20mM Tris·HCl, pH 7.5, 2mM DTT, 0.1mM EDTA, 50% glycerol

Sequenase Reaction Buffer (5X concentrate), 1ml;
200mM Tris·HCl pH 7.5, 100mM MgCl₂, 250mM NaCl

Control DNA; M13mp18, 50μl; 0.2μg/μl

Primer (-40), 100μl; 0.5pmol/μl
5’-GTTTTCCCAGTCACGAC-3’

Dithiothreitol (DTT) Solution, 150μl; 0.1M

Labeling Mix (7-deaza-dGTP) (green-capped tube) (5X concentrate), 100μl;
7.5μM 7-deaza-dGTP, 7.5μM dCTP, 7.5μM dTTP

ddG Termination Mix (for 7-deaza-dGTP, red-capped tube), 250μl;
80μM 7-deaza-dGTP, 80μM dATP, 80μM dCTP, 80μM dTTP, 8μM ddGTP, 50mM NaCl

ddA Termination Mix (for 7-deaza-dGTP, red-capped tube), 250μl;
80μM 7-deaza-dGTP, 80μM dATP, 80μM dCTP, 80μM dTTP, 8μM ddATP, 50mM NaCl

ddT Termination Mix (for 7-deaza-dGTP, red-capped tube), 250μl;
80μM 7-deaza-dGTP, 80μM dATP, 80μM dCTP, 80μM dTTP, 8μM ddTTP, 50mM NaCl

ddC Termination Mix (for 7-deaza-dGTP, red-capped tube), 250μl;
80μM 7-deaza-dGTP, 80μM dATP, 80μM dCTP, 80μM dTTP, 8μM ddCTP, 50mM NaCl
Mn Buffer, 100μl;
0.15M sodium isocitrate, 0.1M MnCl$_2$

Stop Solution, 2 x 1.2ml;
95% formamide, 20mM EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol FF

All nucleotide mixtures should be stored frozen at -20°C and for longest life be kept on ice when thawed for use. The buffers, control DNA, primer and stop solutions can be stored for 4-8 weeks at 4°C. The Sequenase Version 2.0 enzyme must be stored at -20°C and never be allowed to warm up above -20°C. Never store the enzyme in a frost-free freezer (the temperature rises above 0°C daily).

QUALITY CONTROL

All kit batches are functionally tested using radiolabeled dATP and M13mp18 single-stranded DNA template as described in this protocol. Release specifications are based on sequence length, band intensity and sequence quality. The sequence must be visible up to 300 base pairs on a standardized gel with less than 24 hours exposure. The sequence must also be free of background bands strong enough to interfere with sequence interpretation.
SAFETY WARNINGS AND PRECAUTIONS

Warning: For research use only. Not recommended or intended for diagnosis of disease in humans or animals. Do not use internally or externally in humans or animals.

Caution: This product is to be used with radioactive material. Please follow the manufacturer’s instructions relating to the handling, use, storage, and disposal of such material.

All chemicals should be considered as potentially hazardous. We therefore recommend that this product is handled only by those persons who have been trained in laboratory techniques and that it is used in accordance with the principles of good laboratory practice. Wear suitable protective clothing, such as lab coats, safety glasses, and gloves. Care should be taken to avoid contact with skin or eyes. In the case of contact with skin or eyes wash immediately with water (see Material Safety Data Sheets for specific advice).
INTRODUCTION TO CHAIN-TERMINATION SEQUENCING

The Sequenase chain-termination DNA sequencing method (1,2) involves the in vitro synthesis of a DNA strand by a DNA polymerase using a specifically primed single-stranded DNA template. DNA synthesis is carried out in two steps. The first is the labeling step in which the primer is extended using limiting concentrations of the deoxynucleoside triphosphates, including radioactively labeled dATP. This step continues to virtual complete incorporation of labeled nucleotide into DNA chains. These initial primer extensions are distributed randomly in length from several nucleotides to hundreds of nucleotides. In the second step, the concentration of all the deoxynucleoside triphosphates is increased and a chain-terminating nucleotide analog is added. These 2',3'-dideoxynucleoside-5'-triphosphates (ddNTPs) lack the 3'-OH group necessary for DNA chain elongation. Processive DNA synthesis occurs, with extensions on the average of only several dozen nucleotides, until all growing chains are terminated by a ddNTP. When proper mixtures of dNTPs and one of the four ddNTPs are used, enzyme-catalyzed polymerization will be terminated in a fraction of the population of chains at each site where the ddNTP can be incorporated. Four separate reactions, each with a different ddNTP give complete sequence information. The sequencing reactions are stopped by the addition of EDTA and formamide, denatured by heating, separated by high-resolution denaturing acrylamide gel electrophoresis and visualized by autoradiography.

Sequencing with Sequenase Version 2.0 DNA polymerase

Sequenase Version 2.0 DNA polymerase*, as described by Tabor and Richardson (2), is a superior enzyme for isothermal DNA sequencing. It is a genetic variant of bacteriophage T7 DNA polymerase created by in vitro genetic manipulation (3). The genetic modifications of Sequenase Version 2.0 DNA polymerase completely remove the 3'->5' exonuclease activity of native, wild-type T7 DNA polymerase. Its properties also include high processivity, high speed, and the ability to use nucleotide analogs needed for sequencing (ddNTPs, α-thio dNTPs, dITP, 7-deaza-dGTP, etc.) (4).

Note: the concentration of nucleotides in these reactions must be appropriate for Sequenase Version 2.0 enzyme. Mixtures designed for thermostable DNA polymerases, Klenow, or reverse transcriptase will not work with Sequenase Version 2.0 DNA polymerase.

*See license information on back cover.
MATERIALS NOT SUPPLIED

Necessary reagents:

<table>
<thead>
<tr>
<th>α Labeled dATP*</th>
<th>Product codes†</th>
</tr>
</thead>
<tbody>
<tr>
<td>[α-32P]dATP</td>
<td>AH9904/BF1001</td>
</tr>
<tr>
<td>[α-35S]dATP</td>
<td>AG1000/SJ1304</td>
</tr>
<tr>
<td>[α-33P]dATP</td>
<td>AA0004/PB10204</td>
</tr>
</tbody>
</table>

*The specific activity should be 1000-1500Ci/mmol.
†Codes correspond to radiolabeled nucleotides available from Amersham Pharmacia Biotech.

Water—Only deionized, distilled water should be used for the sequencing reactions.

Tris-EDTA (TE) Buffer—This buffer is 10mM Tris·HCl, 1mM EDTA, pH 7.5. It is used for template preparation.

Gel reagents—Sequencing gels should be made from fresh solutions of acrylamide and bis-acrylamide. Other reagents should be ultrapure or electrophoresis grade materials. For convenience, RapidGel™ gel mixes are strongly recommended. RapidGel-XL formulations yield up to 40% more readable sequence per gel. See ‘Related Products’ section for range of USB Ultrapure gel products.

Specialized sequencing primers—Some sequencing projects will require the use of primers which are specific to the project. For most sequencing applications, 0.5-1.0pmol of primer should be used for each set of sequencing reactions. See ‘Supplementary Information; Quantity of template, primer and primer:template ratio’ for details.

Necessary equipment:

Constant temperature bath—Sequencing will require incubations at room temperature, 37°C, 65°C and 75°C. The annealing step will require slow cooling from 65°C to room temperature.

Electrophoresis equipment—While standard, non-gradient sequencing gel apparatus is sufficient for much sequencing work, the use of field-gradient (‘wedge’) gels will allow much greater reading capacity on the gel (5). A power supply offering constant power operation and 2000V or greater is essential.

Gel handling—If 35S or 33P sequencing is desired, a large tray for washing the gel (to remove urea) and a gel drying apparatus are necessary. Gels containing 35S or 33P must be exposed dry in direct contact with the film at room temperature.
Autoradiography—Any large format autoradiography film, such as Hyperfilm™ or Kodak Biomax™ MR, can be used. Development of film is performed according to the instructions of the film manufacturer.

PROTOCOLS

Recommended pre-dilution of polymerase

This kit contains two reagents which can be used optionally to provide increased convenience and reliability to sequencing experiments by pre-diluting the Sequenase DNA polymerase before use. These are the Inorganic Pyrophosphatase (purple-capped tube) and the Glycerol Enzyme Dilution Buffer (pink-capped tube). The addition of pyrophosphatase will eliminate the possibility of occasional weak bands which can occur with prolonged reaction times due to the reverse polymerization reaction, pyrophosphorolysis (6,7).

Dilution of Sequenase DNA polymerase in Glycerol Enzyme Dilution Buffer will eliminate the necessity of diluting the polymerase fresh for each sequencing experiment and allow more flexibility in the labeling reaction incubation time and temperature (8) (see ‘Supplementary Information; Glycerol enables higher reaction temperatures’). The use of the Glycerol Enzyme Dilution Buffer will necessitate the use of a Glycerol Tolerant Gel Buffer (71949) in the sequencing gel since glycerol severely distorts ordinary TBE buffered sequencing gels. (see ‘Supplementary Information; Denaturing gel electrophoresis’).

First, briefly centrifuge the 3 tubes to collect the contents. Add the Pyrophosphatase and Glycerol Enzyme Dilution Buffer to the Sequenase Version 2.0 DNA polymerase tube.

- Inorganic Pyrophosphatase 25μl
- Glycerol Enzyme Dilution Buffer 150μl
- Sequenase DNA polymerase 25μl (Add other reagents to this vial)

Total 200μl (For 100 templates, 2μl each)

Store at -20°C.

Never dilute Sequenase Version 2.0 DNA polymerase in labeling mix, DTT solution or other non-buffered solutions. Enzyme may be added to pre-mixed cocktails only after dilution with Glycerol Enzyme Dilution Buffer or enzyme dilution buffer.

∞† See license information on back cover.
Sequencing reactions

Sequencing reactions are run in microcentrifuge tubes (typically 0.5ml) or microtiter plates. These should be kept capped to minimize evaporation of the small volumes employed. Additions should be made with disposable-tip micropipettes and care should be taken not to contaminate stock solutions. The solutions must be thoroughly mixed after each addition, typically by ‘pumping’ the solution two or three times with the micropipette, avoiding the creation of air bubbles. At any stage where the possibility exists for some solution to cling to the walls of the tube, it should be centrifuged. With care and experience these reactions can be completed in 10-15 minutes.

1. **Denature double-stranded templates**, see ‘Supplementary Information’.

2. **Annealing mixture**:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>_μl</td>
<td>(Up to 7μl)</td>
</tr>
<tr>
<td>H₂O</td>
<td>_μl</td>
<td>(To adjust total volume)</td>
</tr>
<tr>
<td>Sequenase Reaction Buffer</td>
<td>2μl</td>
<td></td>
</tr>
<tr>
<td>Primer</td>
<td>_μl</td>
<td>1μl</td>
</tr>
<tr>
<td>Total</td>
<td>10μl</td>
<td></td>
</tr>
</tbody>
</table>

Anneal by heating 2 minutes at 65°C then cool slowly to <35°C over 15-30 minutes. Centrifuge briefly and chill on ice for use in step 7.

3. While cooling, label, fill and cap tubes with 2.5μl of each termination mix (G, A, T and C) (**red-capped** tubes). Keep covered on ice for steps 5 and 7.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labeling Mix</td>
<td>_μl</td>
<td>(Typically 2μl)</td>
</tr>
<tr>
<td>H₂O</td>
<td>_μl</td>
<td>(Typically 8μl)</td>
</tr>
</tbody>
</table>

5. Pre-warm 4 termination tubes from step 3 (G, A, T and C) in 37°C bath.

6. **Labeling reaction**

To ice-cold annealed DNA mixture (10μl), add:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTT, 0.1M</td>
<td>1μl</td>
<td></td>
</tr>
<tr>
<td>Diluted Labeling Mix</td>
<td>2μl</td>
<td></td>
</tr>
<tr>
<td>[α-³⁵S], [α-³³P] or [α-³²P]dATP</td>
<td>0.5μl</td>
<td></td>
</tr>
<tr>
<td>Diluted Sequenase polymerase</td>
<td>2μl</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15.5μl</td>
<td></td>
</tr>
</tbody>
</table>

Mix and incubate at room temperature 2-5 minutes.
7. **Termination reactions**
 Transfer 3.5μl of labeling reaction to each termination tube (G, A, T and C), mix and continue incubation of the termination reactions at 37°C for 5 minutes.

8. Stop the reactions by adding 4μl of Stop Solution.

9. Heat samples to 75°C for 2 minutes immediately before loading onto sequencing gel. Load 2-3μl in each lane.

SUPPLEMENTARY INFORMATION

Important to note

1. The 1:5 dilution of the Labeling Mix nucleotide solution should be good for several weeks if stored frozen at -20°C.

2. If the polymerase was not pre-diluted in Glycerol Enzyme Dilution Buffer (e.g. if using TBE gels), it must be diluted 1:8 in ice-cold enzyme dilution buffer. Only enough enzyme for immediate use should be diluted (2μl per reaction); diluted enzyme should be stored on ice for no more than 60 minutes.

3. The amount of labeled nucleotide can be adjusted according to the needs of the experiment. Either \([\alpha-^{35}\text{S}]d\text{ATP}, [\alpha-^{33}\text{P}]d\text{ATP}\) (9) or \([\alpha-^{32}\text{P}]d\text{ATP}\) (10) can be used. Nominally, 0.5μl of 10μCi/μl and 10μM (1000Ci/mmol) dATP should be used. Larger amounts have little effect on the reactions unless higher concentrations of the other dNTPs are used. As little as 0.1μl (1μCi) can be used for many experiments.

Preparation of template DNA

Preparation of single-stranded template DNA
Single-stranded template DNA of good purity is essential for excellent sequencing results. Several popular plasmid cloning vectors contain the same lac-derived cloning region as the M13mp vectors and a single-stranded phage replication origin. Production of single-stranded DNA from these vectors is similar to that of the M13 phage and the single-stranded DNA produced can also be used as template for sequencing. There are several published methods for preparing single-stranded DNA from clones in M13 vectors and hybrid plasmid-phage vectors (11,12).

Preparation of double-stranded template DNA
For good results, purified, RNA-free plasmid DNA must be used. Purification on CsCl gradients and PEG precipitation methods produce excellent quality DNA for sequencing. Other, more convenient methods such as alkaline lysis or boiling mini-preps, adsorption to glass and common resin and bead DNA
purification methods yield sequence quality DNA. Specific methods for DNA mini-preps are beyond the scope of this manual. Many commercial preparation kits have been used successfully with these sequencing kit reagents.

Quantity of template, primer and primer:template ratio

The recommended quantity of DNA template for a reaction is approximately 1μg of single-stranded M13 or 3-5μg of plasmid DNA. Typically 0.5-1pmole of primer should be used. This is approximately a 1:1 (primer:template) molar stoichiometry. The concentration of a primer specifically synthesized for use in sequencing should always be determined. The concentration of the primer is determined by measuring the optical density at 260nm (OD$_{260}$). If the primer has N bases, the approximate concentration (pmol/μl) is given by the following formula:

$$\text{Concentration (pmol/μl)} = \text{OD}_{260}/(0.01 \times N)$$

This stoichiometry should be maintained when using larger or smaller templates. The use of too little template will narrow the effective sequencing range, resulting in faint bands near the bottom of the gel. When suboptimal amounts of DNA must be used data can be generated beginning near the primer by using the Mn Buffer** supplied with this kit (see ‘Reading sequences close to the primer’ below).

Denaturing double-stranded DNA

Plasmid DNA will denature (at any temperature) when exposed to pH 13. DNA is denatured by adding 0.1 volumes of 2M NaOH, 2mM EDTA and incubating 10-30 minutes at 37°C (13). The mixture is neutralized by adding 0.1 volumes of 3M sodium acetate (pH 4.5-5.5) and the DNA precipitated with 2 1/2 volumes of ethanol (-70°C, 15 minutes). After washing the pelleted DNA with 70% ethanol, it is redissolved in 7μl of distilled water, and 2μl of Sequenase Reaction Buffer and 1μl of primer are added. Annealing can be done in exactly the same manner as for single-stranded DNA or by warming to 37°C for 15-30 minutes.

Fast alkaline denaturation methods are also effective. They depend on the use of carefully calibrated 1M NaOH and 1M HCl. For dedicated plasmid sequencing projects we recommend the use of the Sequenase Quick-Denature Plasmid Sequencing Kit (70140) which contains the above reagents.

Elimination of compressions

Some DNA sequences, especially those with dyad symmetries containing dG and dC residues, are not fully denatured during electrophoresis. When this occurs, the regular pattern of migration of DNA fragments is interrupted; bands are spaced closer than normal (compressed together) or sometimes farther.

** See license information on back cover.
apart than normal and sequence information is lost. Nucleotide analogs substituted for dGTP, such as 7-deaza-dGTP or dITP, form weaker secondary structures and have been successful in eliminating most of these gel artifacts (14-16). Both 7-deaza-dGTP and dITP are incorporated into DNA by Sequenase Version 2.0 enzyme. Alternatively, the inclusion of up to 40% formamide in sequencing gels (along with 7M urea) has been successful for eliminating very strong compressions (see ‘Denaturing gel electrophoresis’ for details).

Reading sequences close to the primer

There are two methods for specifically emphasizing sequence very close to the primer. One is to use less nucleotide in the labeling step so that the primer extension is more limited than normal. The other is to use Mn Buffer which renders the ddNTPs more potent chain terminators thereby reducing the average extension during the termination step. With either of these methods, the gel should be run only until the first blue dye runs about 80% of the length of the gel (typically 1-2 hours).

Labeling step method—The conditions described in this manual should be followed for sequencing from the primer up to 300-400 nucleotides. If the interest is only in sequences close to the primer (<200 nucleotides), dilute the labeling mix further (1:10 dilution of the 5X stock reagent) and keep both reaction times to 3-5 minutes. For sequencing within 20 bases of the primer, dilution should be about 15-fold and the amount of template DNA must be greater than 0.5pmol (preferably 2µg of M13). Insufficient DNA (or primer) will reduce the labeling of the first few nucleotides from the primer. It is a good practice to double the usual amounts of each for optimal results.

Mn Buffer method—The general conditions will generate sequencing ladders which are faint or absent for nucleotides close to the primer if limited amounts of DNA (less than 0.5pmol or approximately 1µg of M13) are used for the reactions (Figure 1). A solution to this situation is to add Mn Buffer. This reagent takes advantage of the activity of Sequenase Version 2.0 DNA polymerase in the presence of Mn²⁺ ions (17). The addition of Mn²⁺ to normal (Mg²⁺) sequencing reactions (with fixed deoxy- to dideoxy- ratios) reduces the average length of DNA synthesized in the termination step, intensifying bands corresponding to sequences close to the primer. With Mn²⁺, sequences from less than 20 nucleotides from the primer up to approximately 200 nucleotides can be observed even with reduced amounts of template (Figure 2). Mn Buffer is a buffered solution of MnCl₂ which can be added to normal sequencing reactions. To use this reagent, simply add 1µl of Mn Buffer to the labeling reaction prior to distribution to the termination reaction tube. No other changes are necessary. The normal Sequenase Reaction Buffer and other reagents are included as usual.
Figure 1. **Normal sequences with Mg\(^{2+}\)**

Figure 2. **Sequences with Mn buffer**
Notes:

1. It is not recommended to pre-mix the Mn Buffer with any other reagents prior to use. It may oxidize, forming a yellow-brown precipitate.

2. Mn Buffer is effective for sequences generated using dGTP and 7-deaza-dGTP. It is not recommended for dITP sequences because the ddG lane will be faint.

3. The bromophenol blue dye in gel lanes containing Mn Buffer will appear very narrow during electrophoresis. This does not interfere with gel resolution or readability.

4. The amount of Mn Buffer added to the reactions is not critical. Comparable results will be obtained if 0.2-2.0μl of Mn Buffer are added to the reaction. Intermediate effects are not observed as Mn Buffer has an ‘all-or-none’ effect.

5. Mn Buffer is equally effective when sequencing M13 or denatured plasmid DNA.

Reading sequences farther from the primer

When using high-resolution electrophoresis gels, it is possible to see that the sequence-specific bands generated by the normal sequencing protocol begin to fade at about 600-800 nucleotides from the primer. (The precise point where sequence information fades out depends on many factors including the template DNA concentration, the primer concentration, the label concentration and the film exposure conditions.) This is entirely normal; the Sequenase 7-deaza-dGTP Sequencing Kit was designed to limit extensions to the more easily resolved range up to 500-600 bases (extensions beyond this point are just wasted radioactivity if they cannot be read). If your sequencing gel system is capable of resolving sequence bands beyond 600 bases, you may want to further extend the polymerization reactions to obtain sequence information beyond this point. There are two simple ways to do this using the materials in this kit. One involves using more nucleotide in the labeling step and the other involves alteration of the nucleotide mixture used in the termination step.

Extending reactions in the labeling step

For reading beyond 400 nucleotides, the concentrations of the dNTPs in the labeling reaction can be increased 3-5 fold (i.e. use the 7-deaza-dGTP labeling mixture undiluted) and the labeling reaction lengthened to 5 minutes. This increase in concentration applies to dATP as well, so additional labeled dATP must be added to the labeling reaction (1-2μl of 10μM, 10μCi/μl). This will result in a sequence ladder which emphasizes (darkens) the bands in the 200-800 nucleotide range at the expense of the bands in the 20-100 nucleotide range.
Glycerol enables higher reaction temperatures

Sequenase Version 2.0 DNA polymerase, like many enzymes, is stabilized by glycerol. The recommended pre-dilution of the polymerase in the Glycerol Enzyme Dilution Buffer included with this kit will increase the concentration of glycerol present in the labeling reaction from 0.8% to 6%. This allows convenient use of the polymerase without diluting it immediately before use. It also allows higher temperature (stringency) labeling reactions to be run which can increase primer specificity (8). The polymerase is stabilized sufficiently by the use of the Glycerol Enzyme Dilution Buffer that the labeling reactions can be incubated up to 5 minutes at 37°C or even up to 30 minutes at room temperature (20°C). The increased primer specificity can allow the recovery of a primer generated for a ‘primer walking’ sequencing scheme that inadvertently anneals at a secondary (unknown) location(s).

Termination reaction temperatures can also be reliably increased when the glycerol concentration of the termination reaction mixture is increased. For instance, with 25% glycerol, termination reactions pre-warmed to 60°C or even higher can be run (8). This can be of aid in sequencing templates with high secondary structure.

Note: When using increased glycerol concentrations, a Glycerol Tolerant Gel Buffer should be used for the sequencing gel. See ‘Denaturing gel electrophoresis’ section.

Denaturing gel electrophoresis

Under optimal gel electrophoresis conditions, 250-300 bases can be read from the bottom of a standard size sequencing gel. The length of time the gel is run will determine the region of sequence that is readable. Many factors can limit the sequence information which can be determined in a single experiment. Among these are the quality of reagents used, the polymerization, the temperature of the gel during electrophoresis, and proper drying of the gel after running. The greatest care should be given to the pouring and running of sequencing gels. The specifics of running the electrophoresis will depend on the apparatus used. The following suggestions for reagent compositions and procedures are intended as guidelines. For specific instructions contact the manufacturer of the gel apparatus used.

Gel electrophoresis reagents

The following are recipes for typical sequencing gel reagents. There are many variations in current use, but these are among the most common.
Buffers

20X Glycerol Tolerant Gel Buffer (71949 or 75827)
- Tris base 216g
- Taurine 72g
- Na₂EDTA·2H₂O 4g
- H₂O to 1000ml, filter (may be autoclaved)

This buffer can be used with samples containing glycerol at any concentration (8). If gels seem to run a bit slower with this buffer at 1X strength, use it more dilute—approximately 0.8X strength. Be certain to run glycerol tolerant gels at the same power (wattage) as TBE-buffered gels so the gel temperature is normal.

10X TBE buffer (70454)
- Tris base 108g
- Boric acid 55g
- Na₂EDTA·2H₂O 9.3g
- H₂O to 1000ml, filter (may be autoclaved)

This is the traditional sequencing gel buffer. It should NOT be used when the polymerase is pre-diluted in the Glycerol Enzyme Dilution Buffer (Glycerol Tolerant Gel Buffer should be used).

Gel recipes (for 100ml of gel solution)

Standard gel

<table>
<thead>
<tr>
<th>Gel conc. (%)</th>
<th>Acrylamide/ bis-acrylamide</th>
<th>Urea (7-8.3M)</th>
<th>20X Gly. Tol. OR 10X TBE Buffer</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>6%</td>
<td>5.7g/0.3g</td>
<td>42-50g</td>
<td>5ml*</td>
<td>~45ml</td>
</tr>
<tr>
<td>8%</td>
<td>7.6g/0.4g</td>
<td>42-50g</td>
<td>5ml*</td>
<td>~45ml</td>
</tr>
<tr>
<td>6%</td>
<td>5.7g/0.3g</td>
<td>42-50g</td>
<td>-</td>
<td>~40ml</td>
</tr>
<tr>
<td>8%</td>
<td>7.6g/0.4g</td>
<td>42-50g</td>
<td>-</td>
<td>~40ml</td>
</tr>
</tbody>
</table>

Dissolve, adjust volume to 100ml with H₂O, filter and de-gas. When ready to pour, add 1ml of 10% ammonium persulfate and 25μl TEMED (N, N, N', N'-tetramethylethylenediamine).

*Use 4ml for faster gel migration.

Formamide gel (for resolution of compressions)

<table>
<thead>
<tr>
<th>Gel conc. (%)</th>
<th>Acrylamide/ bis-acrylamide</th>
<th>Urea* (7M)</th>
<th>20X Gly. Tol. OR 10X TBE Buffer</th>
<th>Formamide</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>6%</td>
<td>5.7g/0.3g</td>
<td>42g</td>
<td>5ml</td>
<td>40ml</td>
<td>~10ml</td>
</tr>
<tr>
<td>8%</td>
<td>7.6g/0.4g</td>
<td>42g</td>
<td>5ml</td>
<td>40ml</td>
<td>~10ml</td>
</tr>
<tr>
<td>6%</td>
<td>5.7g/0.3g</td>
<td>42g</td>
<td>-</td>
<td>10ml</td>
<td>40ml</td>
</tr>
<tr>
<td>8%</td>
<td>7.6g/0.4g</td>
<td>42g</td>
<td>-</td>
<td>10ml</td>
<td>40ml</td>
</tr>
</tbody>
</table>

*Warming to 35-45°C may be required to dissolve urea completely.
Adjust volume to 100ml with H₂O, filter and de-gas. When ready to pour add 1ml of 10% ammonium persulfate and 100-150μl TEMED. The temperature of the mixture should be 25-35°C—warmer mixtures will polymerize too fast while mixtures below 20°C may precipitate urea. They will require higher running voltage and run slower than urea-only gels. Prior to drying, these gels should be soaked in 5% acetic acid, 20% methanol to prevent swelling. Refer to TechTip #200 available from USB. Contact USB Technical Support or visit www.usbweb.com.

RapidGel Information
USB Ultrapure RapidGels, ready-to-use liquid acrylamide, makes DNA sequencing simpler and more convenient. Gels can be prepared in minutes without the need to weigh harmful reagents. RapidGel gel mixes are available in 4%, 5%, 6% or 8% solutions with 7M urea; or a 40% stock solution containing 19:1 acrylamide to bis-acrylamide may be used for a customized percentage. TBE and Glycerol Tolerant Gel formulations are offered.

General guidelines for electrophoresis
1. Electrophoresis grade reagents should be used.
2. Sequencing gels should be made fresh. Store solutions no longer than one week in the dark at 4°C. Commercial preparations of acrylamide gel mixes in liquid or powder form (RapidGel gel mixes—see ‘Related Products’) should be used according to manufacturers recommendations.
3. Gels should be prepared 2-20 hours prior to use, and pre-run for ~15 minutes.
4. It is usually convenient to run gels for reading longer sequences overnight (with a timer). Gel runs of 18-24 hours at 40-50 watts are often necessary for reading in the 400-600bp range.
5. Loading 8 adjacent lanes in a pattern that abuts all pairs of lanes (e.g. GATCGTAC) aids reading closely spaced bands.
6. Gels should be soaked in 5% acetic acid, 15% methanol to remove the urea. Soaking time depends on gel thickness. Approximate minimum times are 5 minutes for 0.2mm gels, 15 minutes for 0.4mm gels and 60 minutes for field gradient (0.4-1.2mm wedge) or formamide gels. Drying should be done at moderate temperature (80°C) to preserve resolution.
7. If RapidGel-XL is used, the gel does not need to be soaked. In fact, soaking RapidGel-XL gels will cause swelling thereby affecting band resolution in the final result.
8. For 35S or 33P gels, autoradiography must be done with direct contact between the dried gel and the emulsion side of the film. Gels dried without prior soaking (leaving plastic-wrap on helps to prevent the film from sticking to incompletely-dried gels) will require longer drying and exposure times but give sufficient resolution for most purposes.

9. Good autoradiography film can improve image contrast and resolution. We recommend Hyperfilm™-βmax or Kodak Biomax™ MR autoradiography films.

10. In general, overnight to 36 hour exposures are sufficient when using fast film such as Hyperfilm-MP from Amersham Pharmacia Biotech.

11. The use of tapered spacers (‘wedge’ gels) improves overall resolution and allows more nucleotides to be read from a single loading (5).

TROUBLESHOOTING

Problem
Possible causes and solutions

Film blank or nearly blank

1. If using single-sided film, the emulsion side must be placed facing the dried gel.

2. Quality of DNA preparation may be poor; try the control DNA supplied in the kit.

3. Labeled nucleotide too old.

4. Some component missing.

5. Enzyme lost activity.

6. No priming, try control DNA and primer in the kit.

Bands smeared

1. Contaminated DNA preparation; try control DNA.

2. Gel may be bad. Gels should be cast with freshly made acrylamide solutions and should polymerize rapidly, within 15 minutes of pouring. Try running a second gel with the same samples, or for convenience, try RapidGels.

3. Gel run too cold or too hot; sequencing gels should be run at 45-50°C.

4. Gel dried too hot or not flat enough to be evenly exposed to film.

5. Samples not denatured; make sure samples are always heated to 75°C for at least 2 minutes (longer in a heat block) immediately prior to loading on gel.

Upper third of autoradiogram appears distorted

1. Glycerol present in samples. If polymerase is pre-diluted in Glycerol Enzyme Dilution Buffer or glycerol is otherwise introduced into the reactions a glycerol
tolerant sequencing gel must be used. Use Glycerol Tolerant Gel Buffer (see ‘Supplementary Information; Denaturing gel electrophoresis’) or ethanol precipitate samples to remove glycerol. Precipitated samples should be re-dissolved in Stop Solution and heat-denatured as usual.

Sequence faint near the primer

1. Insufficient DNA in the sequencing reaction; a minimum of 0.5pmol of DNA is required for sequencing close to the primer, this usually corresponds to about 1μg of single-stranded M13 DNA and 3-4μg of plasmid DNA. Try increasing the amount of DNA or use the Mn Buffer (see ‘Supplementary Information, Reading close to the primer’).

2. Insufficient primer; use a minimum of 0.5pmol. Primer to template mole ratio should be 1:1 to 5:1.

Bands appear across all 4 lanes

1. Quality of DNA preparation may be poor; try the control DNA in the kit and repurify the template DNA.

2. Reagents not mixed thoroughly during the reactions; mix carefully after each addition, avoiding bubbles and centrifuging to bring all solution to the tip of the tube.

3. Be sure that the annealing step is not run too long or too hot; it is usually sufficient to heat the mixture to 65°C and cool to room temperature within 15-30 minutes.

4. The labeling step should not be run warmer than 20°C or longer than 5 minutes without added glycerol. Doing so will often result in many ‘pause’ sites in the first 100 bases from the primer. The addition of glycerol to the labeling step (e.g. by using the Glycerol Enzyme Dilution Buffer) can greatly improve enzyme stability during this step, allowing longer and warmer labeling reaction incubations (up to 30 minutes at 20°C or 5 minutes at 37°C). The use of glycerol will require the use of a glycerol tolerant electrophoresis gel (see ‘Supplementary Information; Denaturing gel electrophoresis’).

5. The termination step should not be run cooler than 37°C or longer than 5 minutes. Room temperature termination reactions (even ones where the tubes are not pre-warmed) will promote this problem above 100 bases from the primer. Termination reactions can be run up to 50°C (especially with the addition of glycerol as in 4. above), which may improve results for some templates.

6. Sequences with strong secondary structure. Sequenase Version 2.0 DNA polymerase will pause at sites of exceptional secondary structure. Try reducing the concentration of nucleotides in the labeling step to keep extensions during this step from reaching the pause site or using slightly
more Sequenase Version 2.0 enzyme on difficult templates. If the problem persists, the addition of 0.5µg of SSB protein (70032 Y,Z) during the labeling reaction usually eliminates the problem. When using SSB, it is necessary to inactivate it prior to running the gel. Add 0.1µg of Proteinase K (76230 Y,Z) and incubate at 65°C for 20 minutes after adding the Stop Solution.

Bands in 2 or 3 lanes

1. Heterogeneous template DNA caused by isolation of multiple plasmids. Repurify plasmid—containing strain on selective media.
2. Insufficient mixing of reaction mixtures.
3. The sequence may be prone to compression artifacts in the gel. Compressions occur when the DNA (usually G-C rich) synthesized by the DNA polymerase does not remain fully denatured during electrophoresis. Some compression artifacts are not completely resolved by the use of 7-deaza-dGTP. Try using a formamide-containing electrophoresis gel (see ‘Supplementary Information; Denaturing gel electrophoresis’) or using dITP-containing reaction mixtures to eliminate gel compressions.

Some bands faint

1. Termination reaction time too long. If the termination reaction is allowed to continue too long, the synthesized DNA may be degraded at specific sequences. Try adding pyrophosphatase (0.5µl, purple-capped tube) to the labeling step or reducing the termination reaction time (1 minute is usually sufficient). It is a good practice to pre-dilute the polymerase and pyrophosphatase together using the Glycerol Enzyme Dilution Buffer so that pyrophosphatase is used in all reactions. This will require the use of a glycerol tolerant sequencing gel (see ‘Supplementary Information; Denaturing gel electrophoresis’).

Sequence fades early in one lane

1. Template DNA has a biased nucleotide composition. This is common for cDNA templates which have poly-A sequences. In this case, the ‘T’ lane does not extend as far as the others. This is caused by early exhaustion of dTTP and ddTTP in the reactions. Try adding extra dTTP to the labeling reaction (1µl of 500µM dTTP).

If problems persist, please contact Technical Support for assistance at 800.321.9322 or techsupport@usbweb.com in the United States. For your authorized distributor and support staff outside the United States, contact your local Amersham Pharmacia Biotech office. Contact information is listed in the back of this protocol booklet.
CONTROL DNA SEQUENCE

The control DNA included in the kit is from bacteriophage M13mp18, a single-stranded circular DNA of 7.3Kb. A partial sequence of this DNA, beginning at the priming site, is given below (18).

<table>
<thead>
<tr>
<th>-40 primer</th>
<th>G TTTTCCCAGT CACGAC—> 0 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAG GCC CAG G G</td>
<td>TTT TCCCAGT CACGACGTTG TAAAACGACG GCCAGTGCCA AGCTTGCATG</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>CTC GAG GTC</td>
<td>GACTCTAGAG GATCCC CCAGG TACCGAGCTC GAATT CTGA A TCATGGTCAT</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>AGCT GTT TCC</td>
<td>TGTGTA AAT TGT TATCCGC TCACAATTCC ACACAACATA CGACCCGGAA</td>
</tr>
<tr>
<td>140</td>
<td>150</td>
</tr>
<tr>
<td>GCA TA AAG GTG</td>
<td>TAAAGCCCTTG GGTGCTTAA T GAGTGA GCTTA ACTCACATTA ATTCGCTTGC</td>
</tr>
<tr>
<td>200</td>
<td>210</td>
</tr>
<tr>
<td>GCT CA CTG CC</td>
<td>CGCTT TCCAG TCGGAA ACC TGT CGT GCCA GCTCAT TAA TGAATCGGCC</td>
</tr>
<tr>
<td>260</td>
<td>270</td>
</tr>
<tr>
<td>AAC GC GCG GGG</td>
<td>GAG AGG CCG GGT TGCGT ATTG GGGCCA AGG G TTTTTTCT TTTCACCAGT</td>
</tr>
<tr>
<td>320</td>
<td>330</td>
</tr>
<tr>
<td>GAGAC GGG CA</td>
<td>ACAGCTGATT GCCCTT CACC GCCTGCCCT GAGAGATTG CACGAACGG</td>
</tr>
<tr>
<td>Avaii</td>
<td>380</td>
</tr>
<tr>
<td>TCC AC GCT GG</td>
<td>TTTGCC CAG CAGG CGAAA TCTGT TTGA TGGTGTTCC GAAATCGGCC</td>
</tr>
<tr>
<td>440</td>
<td>450</td>
</tr>
<tr>
<td>AAAT C CTTA</td>
<td>TAA AT CAAA A GAATACGGCG AGAT AGG GTT GATGT TTG CCTAGTTGGA</td>
</tr>
<tr>
<td>500</td>
<td>510</td>
</tr>
<tr>
<td>ACA AAG GTCC</td>
<td>ACT AT TAAAG AAC GTGGACT CCAA CGT CAA AGGGCGAAAA ACCGTCTATC</td>
</tr>
<tr>
<td>560</td>
<td>570</td>
</tr>
<tr>
<td>AGGG CGAT TG</td>
<td>CCCACT CAGT GAACC ATC C CAAATCAAG TTTTT TGGG TCGAG GTGCC</td>
</tr>
<tr>
<td>620</td>
<td>630</td>
</tr>
<tr>
<td>GTA AAG CACT</td>
<td>AAAT CGG AAAC CCTA AAAGGA GCCCGGCA TATTAGAGCTTGA CGGGAAAGC</td>
</tr>
<tr>
<td>Naei</td>
<td>680</td>
</tr>
<tr>
<td>CGG CGA AC GT</td>
<td>GGCGGA AAG AAGG GAAAG GAAGCGAAAG AGCGCG CTAGG CGCTC</td>
</tr>
</tbody>
</table>

21
REFERENCES

RELATED PRODUCTS

Sequencing kits

<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Pack size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequenase Version 2.0 DNA Sequencing Kit</td>
<td>For non-cycle radioactive sequencing</td>
<td>100 templates</td>
<td>70770</td>
</tr>
<tr>
<td>Sequenase PCR* Product Sequencing Kit</td>
<td>For rapid sequencing of PCR products</td>
<td>100 templates</td>
<td>70170</td>
</tr>
<tr>
<td>Sequenase Quick-Denature Plasmid Sequencing Kit</td>
<td>For rapid denaturation and sequencing of plasmid DNA</td>
<td>100 templates</td>
<td>70140</td>
</tr>
<tr>
<td>Thermo Sequenase™ Cycle Sequencing Kit</td>
<td>For radioactive cycle sequencing</td>
<td>100 templates</td>
<td>78500</td>
</tr>
<tr>
<td>Radiolabeled Terminator Cycle Sequencing Kit</td>
<td>For cycle radioactive sequencing (In USA, 32P ddNTPs included)</td>
<td>50 templates</td>
<td>In USA, order 188403 Outside USA, order 79750/60</td>
</tr>
</tbody>
</table>

USB Ultrapure reagents for DNA sequencing

<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Pack size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamide</td>
<td>Gel electrophoresis</td>
<td>1kg</td>
<td>75820-1kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500g</td>
<td>75820-500g</td>
</tr>
<tr>
<td>Ammonium Persulfate</td>
<td>Gel electrophoresis</td>
<td>1kg</td>
<td>76322-1kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100g</td>
<td>76322-100g</td>
</tr>
<tr>
<td>Formamide</td>
<td>Gel compressions</td>
<td>1kg</td>
<td>75828-1kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500g</td>
<td>75828-500g</td>
</tr>
<tr>
<td>Gel Sealing Tape</td>
<td>Gel electrophoresis</td>
<td>1 each</td>
<td>78017</td>
</tr>
<tr>
<td>Glycerol Tolerant Gel Buffer, pre-mixed powder</td>
<td>Gel electrophoresis</td>
<td>6 bottles</td>
<td>71949</td>
</tr>
<tr>
<td>Glycerol Tolerant Gel Buffer, 20X solution</td>
<td>Gel electrophoresis</td>
<td>1 liter</td>
<td>75827</td>
</tr>
<tr>
<td>N,N'-Methylene-Bis Acrylamide</td>
<td>Gel electrophoresis</td>
<td>1kg</td>
<td>75821-1kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500g</td>
<td>75821-500g</td>
</tr>
<tr>
<td>RapidGel-5%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75842-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75842-500ml</td>
</tr>
<tr>
<td>RapidGel-6%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75843-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75843-500ml</td>
</tr>
<tr>
<td>RapidGel-8%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75844-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75844-500ml</td>
</tr>
<tr>
<td>RapidGel-40%</td>
<td>Gel electrophoresis; stock solution</td>
<td>500ml</td>
<td>75848-500ml</td>
</tr>
<tr>
<td>RapidGel-GTG-6%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75846-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75846-500ml</td>
</tr>
<tr>
<td>RapidGel-GTG-8%</td>
<td>Gel electrophoresis</td>
<td>100ml</td>
<td>75847-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75847-500ml</td>
</tr>
<tr>
<td>RapidGel-XL-6%</td>
<td>Gel electrophoresis; longer readable sequence</td>
<td>100ml</td>
<td>75861-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75861-500ml</td>
</tr>
</tbody>
</table>

See license information on back cover.
<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Pack size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RapidGel-XL-8%</td>
<td>Gel electrophoresis; longer readable sequence</td>
<td>100ml</td>
<td>75862-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75862-500ml</td>
</tr>
<tr>
<td>RapidGel-XL-40%</td>
<td>Gel electrophoresis; longer readable sequence; stock solution</td>
<td>100ml</td>
<td>75863-100ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500ml</td>
<td>75863-500ml</td>
</tr>
<tr>
<td>Taurine</td>
<td>Gel electrophoresis</td>
<td>1kg</td>
<td>75824-1kg</td>
</tr>
<tr>
<td>TBE Buffer, 10X</td>
<td>Gel electrophoresis</td>
<td>6 bottles</td>
<td>70454-1pk</td>
</tr>
<tr>
<td>TEMED</td>
<td>Gel electrophoresis</td>
<td>500g</td>
<td>76320-500g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100g</td>
<td>76320-100g</td>
</tr>
<tr>
<td>Tris</td>
<td>Gel electrophoresis</td>
<td>5kg</td>
<td>75825-5kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1kg</td>
<td>75825-1kg</td>
</tr>
<tr>
<td>Urea</td>
<td>Gel electrophoresis</td>
<td>1kg</td>
<td>75826-1kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500g</td>
<td>75826-500g</td>
</tr>
<tr>
<td>Xylene cyanol</td>
<td>Gel electrophoresis</td>
<td>25g</td>
<td>23513</td>
</tr>
</tbody>
</table>

Enzymes

<table>
<thead>
<tr>
<th>Product</th>
<th>Application</th>
<th>Pack size</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequenase Version 2.0</td>
<td>For non-cycle radioactive sequencing</td>
<td>200 units</td>
<td>70775Y</td>
</tr>
<tr>
<td>DNA polymerase</td>
<td></td>
<td>1000 units</td>
<td>70775Z</td>
</tr>
</tbody>
</table>
USB CORPORATION

USA
Cleveland, Ohio
800.321.9322
www.usbweb.com

USB Authorized Distributor: Amersham Pharmacia Biotech

Asia Pacific
Tel: +852 2811 8693
Australia
Tel: +61 2 9894 5188
Austria
Tel: 01 57 606 16
Belgium
Tel: 0800 73888
Canada
Tel: 1 800 463 5800
Central and East Europe
Tel: +43 1 982 3826
Denmark
Tel: +45 16 24 00
Finland
Tel: (09) 512 3940
Former Soviet Union
Tel: +7 (095) 232 0250
France
Tel: 01-6935-6700
Germany
Tel: 0761 4903
Italy
Tel: 02 27322 1
Japan
Tel: 81 3 5331 9317
Latin America
Tel: +55 11 3667 5700
Middle East and Africa
Tel: +30 (1) 96 00 687
Netherlands
Tel: 0165 580 410
Norway
Tel: 23 18 58 00
Portugal
Tel: 01 417 70 35
South East Asia
Tel: 60 3 724 2080
South East Europe
Tel: +43 (1) 982 3826
Spain
Tel: 935 944 950
Sweden
Tel: 018 16 19 00
Switzerland
Tel: 01 802 81 50
UK
Tel: 0800 616 928
USA
Tel: 1 800 526 3593
Material Safety Data Sheet
Revision: 04/07/1995
Hazard information is provided for compliance with both the UK Chemicals (Hazard Information and Packaging) (CHIP) Regulations and the US Hazard Communication Standard (HCS).

IDENTIFICATION OF THE PRODUCT

PRODUCT NAME: Sequenase 7-deaza-dGTP sequencing kit
PRODUCT CODE: 70990
FCC NUMBER: None

SUPPLIER:
USB Corporation
26111 Miles Road, Cleveland, OH 44128
Phone: (216) 765-5000

COMPOSITION/HAZARDOUS COMPONENTS

<table>
<thead>
<tr>
<th>HAZARD</th>
<th>CAS NO.</th>
<th>%WT</th>
<th>TLV</th>
<th>CHIP R & S PHRASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formamide in Part 70724</td>
<td>75-12-7</td>
<td>95%</td>
<td>10ppm</td>
<td>R:62 Possible risk of impaired fertility</td>
</tr>
<tr>
<td>Formamide: Toxic to Reproduction, Category 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R:63 Possible risk of harm to the unborn child</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S:24/25 Avoid contact with skin and eyes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tris-HCl in Part 70702</td>
<td>1185-53-1</td>
<td>3.2%</td>
<td>—</td>
<td>No applicable information</td>
</tr>
<tr>
<td>No applicable information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dithiothreitol in Part 70726</td>
<td>27565-41-9</td>
<td>1.5%</td>
<td>—</td>
<td>No applicable information</td>
</tr>
</tbody>
</table>

HAZARDS IDENTIFICATION

CHIP
Formamide: Toxic to Reproduction, Category 3

HCS
Formamide: Teratogen. Tris-HCl and Dithiothreitol: Irritant

FIRST-AID MEASURES

EYES: Flush with water for 15 minutes. Seek medical advice if irritation persists.
SKIN: Flush with water, then wash thoroughly with soap and water. Remove contaminated clothing and wash before reuse. Seek medical attention if irritation persists.
INHALATION: Remove the victim from exposure and move to fresh air. If breathing is difficult, give oxygen. If not breathing, give artificial respiration. Keep victim quiet and warm. Seek immediate medical attention.
INGESTION: Drink water and seek immediate medical attention. Avoid alcoholic beverages. Never give anything by mouth to an unconscious person.

FIRE-FIGHTING INFORMATION

Media suitable to extinguish the supporting or surrounding fire.
Special fire-fighting procedures: Wear self-contained breathing apparatus.
Unusual fire or explosion hazards: No information available.
Flash Point = 310°F (154°C) for Formamide.
ACCIDENTAL RELEASE MEASURES
Wear appropriate personal protective equipment and clothing including lab coat, safety glasses, gloves and NIOSH-approved dust mask. Dike material with a suitable inert absorbent. Place in a suitable waste container. Avoid contact of material with skin or eyes. Use adequate ventilation.

HANDLING AND STORAGE
Wear appropriate personal protective equipment and clothing including lab coat, safety glasses, gloves and NIOSH-approved dust mask. Avoid contact of material with skin or eyes. Store at -20°C. Store away from alkali and acids for Formamide. Store away from oxidizing materials for Tris-HCl. Store away from bases, oxidizing and reducing agents and alkali metals for DTT.

PERSONAL PROTECTION
Wear appropriate personal protective equipment and clothing including lab coat, safety glasses, gloves and NIOSH-approved dust mask. A qualified industrial hygienist should evaluate the need for respiratory protection. Use respiratory protection approved by NIOSH (or equivalent) and appropriate to the hazard. Avoid contact of material with skin or eyes. Mechanical ventilation or local exhaust as needed to control exposure to dust, vapors or mists. Access to a safety shower and eye-wash. Pregnant women or women of child bearing age should minimize contact and exposure to Formamide.

PHYSICAL AND CHEMICAL PROPERTIES
APPEARANCE: Kit containing vials of solutions.
BOILING POINT: 210°C for Formamide.
VAPOR PRESSURE: No data available.
VAPOR DENSITY: No data available.
SOLUBILITY (in water): Formamide is insoluble. All other reagents are soluble in water.
SPECIFIC GRAVITY: 1.33 (for Formamide).
PERCENT VOLATILE: No data available.
EVAPORATION RATE: No data available.

STABILITY AND REACTIVITY
Product is stable. Avoid freeze-thaw cycles. Formamide decomposes at temperatures >180°C. Incompatibility of alkali and acids for Formamide. Incompatibility: Alkali and acids for Formamide, oxidizing materials for Tris-HCl and bases, oxidizing and reducing agents and alkali metals for DTT.

TOXICOLOGICAL INFORMATION
Formamide: has caused embryotoxicity and birth defects in animal studies; may cause damage to liver and denatures proteins; may be absorbed through the skin. Tris-HCl and Dithiothreitol: may cause irritation to skin, eyes and mucous membranes.

ECOLOGICAL INFORMATION
No information available.

DISPOSAL CONSIDERATIONS
Dispose of material in accordance with applicable local, state, federal regulations.

TRANSPORTATION INFORMATION
No applicable information.

REGULATORY INFORMATION
No applicable information.

This data sheet is based upon information believed to be reliable. The Company makes no statement or warranty as to the accuracy or completeness of the information contained herein which is offered for your consideration, investigation and verification. Any use of the information contained in this data sheet must be determined by the user to be in accordance with appropriate applicable regulations.
All goods and services are sold subject to the terms and conditions of sale of the company within USB Corporation or the group which supplies them. A copy of these terms and conditions is available on request.

Notice to purchaser about limited license
This product is sublicensed from Amersham Pharmacia Biotech, Inc.
The purchase of this kit (reagent) includes a limited non-exclusive sublicense under certain patents* to use the kit (reagent) to perform a patented DNA sequencing method in those patents solely for use with Sequenase DNA polymerase purchased from USB Corporation for research activities. Use of this kit (reagent) for commercial activities is not licensed. By way of example, but not by way of limitation, this license does not grant rights to use the kit (reagent) (1) for any procedure involving the diagnosis, treatment, prevention or mitigation of disease or other health-related condition or involving the detection of pathogens or genetic traits for medical uses; (2) for agriculture or veterinary medicine; (3) for cloning or producing nucleotide sequences for commercial sale. No other license is granted expressly, impliedly or by estoppel. For information concerning availability of additional licenses to practice the patented methodologies, contact Amersham Pharmacia Biotech, Inc., Director, VP Corporate Development, Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA England.

*Sequenase DNA Polymerase—This reagent (kit) is covered by or suitable for use under one or more US Patent numbers: 4,795,699; 4,946,786; 4,942,130; 4,962,020; 4,994,372, 5,145,776; 5,173,411; 5,266,466, 5,409,811, 5,498,523, 5,639,608 and 5,674,716. Patents pending in US and other countries.

Pyrophosphatase—This product and/or its method of use is covered by one or more of the following patent(s): US Patent number 5,498,523 and foreign equivalents.

‡Glycerol Tolerant Gel Buffer—This product and/or its method of use is covered by US patent number 5,314,595.

**Mn Buffer—Purchase includes a non-exclusive sublicense solely for use with Sequenase DNA polymerase. No other license is granted expressly, impliedly or by estoppel.

The Polymerase Chain Reaction (PCR) is covered by patents owned by Roche Molecular Systems and F. Hoffmann-La Roche Ltd. Amersham is a trademark of Nycomed Amersham plc Pharmacia is a trademark of Pharmacia & Upjohn, Inc. Hyperfilm, RapidGel, Sequenase and Thermo Sequenase are trademarks of Amersham Pharmacia Biotech Limited and/or its subsidiaries. BioMax is a trademark of Eastman Kodak Co. USB and logo design are registered trademarks of USB Corporation.
©USB Corporation 1999 - All rights reserved

Printed in the United States
USB Corporation
26111 Miles Road
Cleveland, Ohio 44128 USA
www.usbweb.com 96-0990A/00/01