Affymetrix® Genome-Wide Human SNP Nsp/Sty Assay 5.0
For research use only.
Not for use in diagnostic procedures.

Trademarks

Affymetrix®, GeneChip®, HuSNP®, GenFlex®, Flying Objective™, CustomExpress®, CustomSeq®, NetAffx™, Tools to Take You As Far As Your Vision®, The Way Ahead™, Powered by Affymetrix™, GeneChip-compatible™, and Command Console™ are trademarks of Affymetrix, Inc.

All other trademarks are the property of their respective owners.

Limited License

Subject to the Affymetrix terms and conditions that govern your use of Affymetrix products, Affymetrix grants you a non-exclusive, non-transferable, non-sublicensable license to use this Affymetrix product only in accordance with the manual and written instructions provided by Affymetrix. You understand and agree that except as expressly set forth in the Affymetrix terms and conditions, that no right or license to any patent or other intellectual property owned or licensable by Affymetrix is conveyed or implied by this Affymetrix product. In particular, no right or license is conveyed or implied to use this Affymetrix product in combination with a product not provided, licensed or specifically recommended by Affymetrix for such use.

Patents

Arrays: Products may be covered by one or more of the following patents and/or sold under license from Oxford Gene Technology: U.S. Patent Nos. 5,445,934; 5,700,637; 5,744,305; 5,945,334; 6,054,270; 6,140,044; 6,261,776; 6,291,183; 6,346,413; 6,399,365; 6,420,169; 6,551,817; 6,610,482; 6,733,977; and EP 619 321; 373 203 and other U.S. or foreign patents.

Copyright

© 2006-2007 Affymetrix, Inc. All rights reserved.
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
</tr>
<tr>
<td>About This Manual ... 1</td>
</tr>
<tr>
<td>About Whole Genome Sampling Analysis 2</td>
</tr>
<tr>
<td>References .. 4</td>
</tr>
<tr>
<td>Chapter 2</td>
</tr>
<tr>
<td>General Workflow .. 13</td>
</tr>
<tr>
<td>Contamination Prevention .. 14</td>
</tr>
<tr>
<td>Pre-PCR Clean Room ... 14</td>
</tr>
<tr>
<td>PCR Staging Room .. 15</td>
</tr>
<tr>
<td>Main Lab ... 15</td>
</tr>
<tr>
<td>Safety Precautions .. 15</td>
</tr>
<tr>
<td>Chapter 3</td>
</tr>
<tr>
<td>General Requirements ... 17</td>
</tr>
<tr>
<td>Sources of Human Genomic DNA 18</td>
</tr>
<tr>
<td>Genomic DNA Extraction/Purification Methods 18</td>
</tr>
<tr>
<td>DNA Cleanup .. 19</td>
</tr>
<tr>
<td>References ... 19</td>
</tr>
<tr>
<td>Chapter 4</td>
</tr>
<tr>
<td>About This Protocol .. 21</td>
</tr>
<tr>
<td>Workflow Recommendations 23</td>
</tr>
<tr>
<td>Before You Begin ... 25</td>
</tr>
<tr>
<td>Master Mix Preparation .. 25</td>
</tr>
<tr>
<td>Reagent Handling and Storage 25</td>
</tr>
<tr>
<td>Preparing the Work Area for Each Stage 26</td>
</tr>
<tr>
<td>Thermal Cyclers, Plates and Plate Seals 27</td>
</tr>
<tr>
<td>Program Your Thermal Cyclers 28</td>
</tr>
</tbody>
</table>
Genomic DNA Plate Preparation .. 29
About this Stage ... 29
Location and Duration .. 29
Input Required ... 29
Equipment and Consumables Required 30
Reagents Required .. 30
Preparing the Genomic DNA Plate 31
Aliquoting Prepared Genomic DNA 32
What To Do Next .. 32
Stage 1: Sty Restriction Enzyme Digestion 33
About this Stage ... 33
Location and Duration .. 33
Input Required From Previous Stage 33
Equipment and Consumables Required 34
Reagents Required .. 34
Important Information About This Stage 34
Prepare the Reagents, Equipment and Consumables 35
Prepare the Sty Digestion Master Mix 36
Add Sty Digestion Master Mix to Samples 37
What To Do Next .. 37
Stage 2: Sty Ligation ... 40
About this Stage ... 40
Location and Duration .. 40
Input Required From Previous Stage 40
Equipment and Consumables Required 41
Reagents Required .. 41
Important Information About This Procedure 41
Prepare the Reagents, Consumables and Other Components 42
Prepare the Sty Ligation Master Mix 43
Add Sty Ligation Master Mix to Reactions 44
Dilute the Samples .. 44
What To Do Next .. 44
Stage 3: Sty PCR .. 47
About this Stage ... 47
Location and Duration .. 47
Input Required from Previous Stage 47
Equipment and Materials Required 48
Stage 6: Nsp PCR ... 71
About this Stage .. 71
Location and Duration ... 71
Input Required from Previous Stage 71
Equipment and Materials Required 72
Reagents Required .. 73
Gels and Related Materials Required 73
Important Information About This Stage 74
Prepare the Reagents, Consumables and Other Components ... 74
Aliquot Nsp Ligated DNA to the PCR Plates 75
Prepare the Nsp PCR Master Mix 76
Add Nsp PCR Master Mix to Samples 77
Load Nsp PCR Plates Onto Thermal Cyclers 78
Running Gels ... 80
What To Do Next .. 81
Stage 7: PCR Product Pooling and Purification 82
About this Stage .. 82
Location and Duration ... 82
Input Required from Previous Stage 82
Equipment and Consumables Required 83
Reagents Required .. 84
Important Information About This Stage 84
Prepare the 75% EtOH ... 85
Prepare the Reagents ... 85
Prepare the Vacuum Manifold ... 85
Pool the PCR Products .. 85
Purify the Pooling PCR products 88
Elute the Purified Reactions ... 91
What To Do Next .. 94
Stage 8: Quantitation ... 95
About this Stage .. 95
Location and Duration ... 95
Input Required from Previous Stage 95
Equipment and Consumables Required 95
Reagents Required .. 96
Important Information About This Stage 97
Prepare the Reagents, Equipment and Consumables 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare Diluted Aliquots of Purified Sample</td>
<td>98</td>
</tr>
<tr>
<td>Quantitate the Diluted PCR Product</td>
<td>99</td>
</tr>
<tr>
<td>Assess the OD Readings</td>
<td>100</td>
</tr>
<tr>
<td>OD Troubleshooting Guidelines</td>
<td>100</td>
</tr>
<tr>
<td>What To Do Next</td>
<td>102</td>
</tr>
<tr>
<td>Stage 9: Fragmentation</td>
<td>103</td>
</tr>
<tr>
<td>About this Stage</td>
<td>103</td>
</tr>
<tr>
<td>Location and Duration</td>
<td>103</td>
</tr>
<tr>
<td>Input Required from Previous Stage</td>
<td>103</td>
</tr>
<tr>
<td>Equipment and Consumables Required</td>
<td>104</td>
</tr>
<tr>
<td>Reagents Required</td>
<td>105</td>
</tr>
<tr>
<td>Gels and Related Materials Required</td>
<td>105</td>
</tr>
<tr>
<td>Important Information About This Stage</td>
<td>106</td>
</tr>
<tr>
<td>Prepare the Reagents, Consumables and Other Components</td>
<td>107</td>
</tr>
<tr>
<td>Prepare the Samples for Fragmentation</td>
<td>108</td>
</tr>
<tr>
<td>What To Do Next</td>
<td>110</td>
</tr>
<tr>
<td>Check the Fragmentation Reaction</td>
<td>111</td>
</tr>
<tr>
<td>Stage 10: Labeling</td>
<td>112</td>
</tr>
<tr>
<td>About this Stage</td>
<td>112</td>
</tr>
<tr>
<td>Location and Duration</td>
<td>112</td>
</tr>
<tr>
<td>Input Required from Previous Stage</td>
<td>112</td>
</tr>
<tr>
<td>Equipment and Consumables Required</td>
<td>112</td>
</tr>
<tr>
<td>Reagents Required</td>
<td>113</td>
</tr>
<tr>
<td>Important Information About This Stage</td>
<td>114</td>
</tr>
<tr>
<td>Prepare the Reagents, Consumables and Other Components</td>
<td>114</td>
</tr>
<tr>
<td>Prepare the Labeling Master Mix</td>
<td>115</td>
</tr>
<tr>
<td>Add the Labeling Master Mix to the Samples</td>
<td>115</td>
</tr>
<tr>
<td>What To Do Next</td>
<td>116</td>
</tr>
<tr>
<td>Stage 11: Target Hybridization</td>
<td>117</td>
</tr>
<tr>
<td>About this Stage</td>
<td>117</td>
</tr>
<tr>
<td>Location and Duration</td>
<td>117</td>
</tr>
<tr>
<td>Input Required from Previous Stage</td>
<td>117</td>
</tr>
<tr>
<td>Equipment and Consumables Required</td>
<td>118</td>
</tr>
<tr>
<td>Reagents Required</td>
<td>119</td>
</tr>
<tr>
<td>Important Information About This Stage</td>
<td>120</td>
</tr>
</tbody>
</table>
Assessing Data Quality ... 165
QC Call Rate ... 166
Oligonucleotide Controls .. 168
B2 Oligo Performance ... 168
Downstream Analysis Considerations 170

Chapter 7 Troubleshooting 173
Assay Recommendations .. 173
Troubleshooting the Genome-Wide Human SNP 5.0 Nsp/Sty Assay . 176
OD Troubleshooting Guidelines 179
When to Contact Technical Support 182
 Instruments ... 182

Chapter 8 Vacuum Manifold and Fluidics Station Care and Maintenance 183
Cleaning the Vacuum Manifold 183
General Fluidics Station Care 183
Fluidics Station Bleach Protocol 185
 The Bleach Cycle ... 185
 The Rinse Cycle ... 190

Appendix A Reagents, Equipment, and Consumables 193
About this Appendix ... 193
Reagents ... 194
 Affymetrix Reagents Required 194
 New England Biolabs Reagents Required 195
 Other Reagents Required 196
Equipment and Software Required 197
 Affymetrix Equipment and Software Required 197
 Other Equipment Required 198
 Thermal Cyclers, PCR Plates and Plate Seals 199
Consumables Required .. 201
About This Manual

This manual is a guide for technical personnel conducting the Affymetrix® Genome-Wide Human SNP Nsp/Sty 5.0 Assay (Genome-Wide SNP 5.0 Assay) experiments in the laboratory. It contains:

- Protocols for sample preparation and 48 sample processing
- Instructions for washing, staining, and scanning arrays
- Instructions for generating genotype calls
- Troubleshooting information

A description of each chapter follows.

Chapter 1: Overview

Provides a scientific overview of the concept behind the Genome-Wide SNP 5.0 Assay, including the biochemical process, data generation, potential applications, and a list of references.

Chapter 2: Laboratory Setup

Describes the appropriate laboratory configuration for running Genome-Wide SNP 5.0 Assay experiments.

Chapter 3: Genomic DNA Preparation

Describes the requirements for genomic DNA, with recommended sources and methods for purification and quantitation.

Chapter 4: Genome-Wide SNP 5.0 Assay for 48 Samples

Includes a detailed, step-by-step protocol for processing 48 samples of human genomic DNA.

Chapter 5: Washing, Staining, and Scanning

Includes instructions and protocols for fluidics station and scanner operation.
Chapter 6: Data Analysis
Describes how to analyze data using the BRLMM Analysis Tool 2.0.

Chapter 7: Troubleshooting
Provides additional guidelines for obtaining optimal assay results including troubleshooting tips.

Chapter 8: Instrument Maintenance
Includes maintenance recommendations and procedures for the vacuum manifold and fluidics station.

Appendix A: Reagents, Equipment, and Supplies Required for the Genome-Wide SNP 5.0 Assay
Includes vendor and part number information for the equipment and reagents required.

Appendix B: Thermal Cycler Programs Required for the Genome-Wide SNP 5.0 Assay
Lists the thermal cycler programs required.

Appendix C: E-Gels
Describes the use of e-gels for the protocol.

About Whole Genome Sampling Analysis
Long before the completion of the human genome sequence, it was clear that sites of genetic variation could be used as markers to identify disease segregation patterns among families. This approach successfully led to the identification of a number of genes involved in rare, monogenic disorders [1]. Now that the genome sequence has been completed and is publicly available [2, 3], attention has turned to the challenge of identifying genes involved in common, polygenic diseases [4, 5].

The markers of choice that have emerged for whole-genome linkage scans and association studies are single nucleotide polymorphisms (SNPs). Although there are multiple sources of genetic variation that occur among individuals, SNPs are the most common type of sequence variation and are powerful markers due to their abundance, stability, and relative ease of scoring [6].

Current estimates of the total human genetic variation suggest that there are over 10 million SNPs with a minor allele frequency of at least 5% [7]. The ongoing international effort to characterize human haplotypes (HapMap Project) in four major world populations will identify a standard set of common-allele SNPs that are expected to provide the framework for new genome-wide studies designed to identify the underlying genetic basis of complex diseases, pathogen susceptibility, and differential drug responses [8, 9].
Genome-wide association studies, which are based on the underlying principle of linkage disequilibrium (LD) in which a disease predisposing allele co-segregates with a particular allele of a SNP, have been hampered by the lack of whole-genome genotyping methodologies [10]. As new genotyping technologies develop, coupled with ongoing studies into LD patterns and haplotype block structure across the genome, improvements in the design and power of association studies will be feasible [11-18].

We have developed an assay termed whole-genome sampling analysis (WGSA) for highly multiplexed SNP genotyping of complex DNA [19, 20]. This method reproducibly amplifies a subset of the human genome through a single primer amplification reaction using restriction enzyme digested, adapter-ligated human genomic DNA. This assay was first developed for simultaneous genotyping of over 10,000 SNPs on a single array (GeneChip® Human Mapping 10K Array Xba 142 2.0) and has been used to date for both linkage studies [21-40] and association studies [41-46]. The WGSA assay was extended to allow highly accurate SNP genotyping of over 100,000 SNPs using the two array GeneChip® Mapping 100K Set [47]. These arrays have also been used for genome-wide LD studies [48] as well as landmark whole-genome association studies in age-related macular degeneration, multiple sclerosis, and cardiac repolarization. [49-51]. The WGSA assay was again extended in 2005 with the fourth-generation product known as the GeneChip® Mapping 500K Assay in which 500,000 SNPs are queried using a two-array set [52].

The same characteristics that make SNPs useful markers for genetic studies also make SNPs powerful markers for additional biological applications such as the analysis of population and admixture structure [53-56] and DNA copy number changes. The latter include but are not limited to loss of heterozygosity (LOH), deletions, uniparental disomy (UPD) and gene amplifications [57-80]. The integration of DNA copy number changes with gene expression profiles provides a powerful paradigm for elucidating gene function, elegantly illustrated for example by the demonstration that MITF is an oncogene amplified in malignant melanoma [81].

In the last several years there has been an increasing appreciation of the extent of structural variation present among normal individuals [82-88]. Copy number variations (CNVs) can encompass a wide-range of molecular alterations including duplications, losses, and inversions, can span sizes from ~5kb to 50kb (intermediate sized) and 50kb to 3Mb (large scale), and are distinct from the genetic sequence diversity represented by (SNPs). Although there are, for example, several clear examples of how CNVs can influence susceptibility to HIV infection [89], modulate drug responses [90], or contribute to genomic micro-deletion and duplication syndromes [91], a comprehensive biological understanding of the roles of CNVs is not yet currently available but will be important in the context of both the normal and disease states. To this end, the GeneChip® Mapping 500K array set (early access version) has recently been used for a comprehensive view of CNVs among 270 HapMap samples. Greater than 1,000 copy number variable regions were found spanning a broad size range from less than 1kb to over 3Mb [92, 93]. Importantly, the genetic correlation between CNVs and SNPs has also been studied. In the case of biallelic CNVs and common deletion polymorphisms, there is evidence of linkage disequilibrium with neighboring SNPs, but this relationship
is not nearly as strong in the case of complex CNVs [92, 94-96]. Thus whole genome SNP-based association studies should benefit from the capability to type CNVs directly rather than relying on LD with SNP markers.

The fifth-generation product in the mapping portfolio, the Affymetrix® Genome-Wide Human SNP Array 5.0, also uses the WGS assay that has been the hallmark characteristic of all previous mapping arrays. This single array interrogates nearly 500,000 SNPs by combining the Nsp I and Sty I PCR fractions prior to the DNA purification step and through a reduction in the absolute number of features associated with each individual SNP on the array. This array also contains 420,000 non-polymorphic probes designed to interrogate CNVs in the genome; 100,000 of these probes interrogate previously identified CNVs while the remaining 320,000 are distributed across the genome for improved CNV detection.

In summary, the Genome-Wide Human SNP Array 5.0 leverages a DNA target prep that is successfully used in the GeneChip® Mapping 500K array set such that nearly 500,000 SNPs are genotyped on a single array. The array also contains non-polymorphic probes for improved detection of copy number variants present in the genome. The Genome-Wide Human SNP Array 5.0 thus provides a robust, flexible, cost-effective approach for scoring SNP genotypes in large numbers of samples and will provide a new technological paradigm for the design of whole-genome SNP-based association studies.

References

50. Serono Identifies 80 Genes Involved in Multiple Sclerosis Using 100,000 SNPs. In: Affymetrix Microarray Bulletin; 2005; Issue 1: 1-4; www.microarraybulletin.com

96. Hinds, DA, Kloeck, AP, Jen, M, Chen, X, Frazer, KA: Common deletions and SNPs are in linkage disequilibrium in the human genome. *Nat Genet* 2006, **38**:82-5.
General Workflow

The table below indicates the laboratory areas in which the various stages of the Affymetrix® Genome-Wide Human SNP 5.0 Nsp/Sty Assay should be carried out: Pre-PCR Clean Room, PCR Staging Room, and Main Lab. Guidelines for each area are provided in this chapter.

<table>
<thead>
<tr>
<th>Area</th>
<th>Template (Genomic DNA)</th>
<th>PCR Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-PCR Clean Room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay Steps:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reagent Preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR Staging Room</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Assay Steps:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Digestion</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>• Ligation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PCR (set up only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Lab</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Assay Steps:</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• PCR thermal cycling</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• PCR cleanup</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Fragmentation</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Labeling</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Hybridization</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Washing and staining</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Scanning</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Contamination Prevention

Care should be taken to minimize possible sources of contamination that would reduce genotyping accuracy, call rate, and consequently, genetic power. To reduce the possibility of cross-contamination, Affymetrix recommends maintaining a single direction workflow.

NOTE:

- The most likely potential source of contamination for the Genome-Wide Human SNP 5.0 Nsp/Sty Assay is previously amplified PCR product.
- Each room should contain dedicated equipment such as thermal cyclers, microfuges, pipets, tips, etc.
- Once you enter the Main Lab, do not return to the Pre-PCR Room or the PCR Staging Room until you have showered and changed into freshly laundered clothing.
- Maintain an ambient laboratory environment throughout the procedure.

Precautions that you can take to minimize contaminating pre-PCR steps with amplified PCR product include the following:

- Store reagents in the proper room according to the box label and reagent kit insert.
- Restrict movements through labs containing amplified DNA.
- Use proper gowning procedures.
- Use dedicated equipment for pre-PCR stages (e.g., pipets, tips, thermal cyclers, etc.).
- Print separate copies of the protocol for each room.

Pre-PCR Clean Room

The Pre-PCR Clean Room (or dedicated area such as a biosafety hood) should be free of DNA template and PCR amplicons. The master stocks of PCR primer and adaptor should be stored here, with aliquots taken for use in the PCR Staging Room.

Reagent preparation tasks, such as preparing master mixes, should be done in this room. The use of gowns, booties, and gloves is strongly recommended to prevent PCR carryover, and to minimize the risk of trace levels of contaminants being brought into the Pre-PCR Clean Room. This room should contain dedicated pipets, tips, vortex, etc. Refer to Appendix A, Reagents, Equipment, and Consumables for more information.
PCR Staging Room

The PCR Staging Room is a low copy template lab, which should be free from any PCR product (amplicons). It is the area where non-amplified template (genomic DNA) should be handled. The digestion and ligation reactions should be conducted in this area. The PCR reactions should be prepared in this area. The use of gowns, booties, and gloves is recommended to prevent PCR carryover.

Main Lab

The Main Lab has airborne contamination with PCR product and template. After entering the main lab it is inadvisable to re-enter the Pre-PCR Clean Area or the PCR Staging Room without first showering and changing into freshly laundered clothes.

Safety Precautions

The Genome-Wide Human SNP Nsp/Sty Assay Kit 5.0 as well as the Genome-Wide Human SNP Array 5.0 are for research use only.

All blood and other potentially infectious materials should be handled as if capable of transmitting infection and disposed of with proper precautions in accordance with federal, state, and local regulations.

NOTE: Some components required for this assay may pose significant health risks. Follow prudent laboratory practices when handling and disposing of carcinogens and toxins. Refer to the manufacturer’s Material Safety Data Sheet for additional information.

Wear appropriate personal protective equipment when performing this assay. At a minimum, safety glasses and chemical resistant gloves should be worn.
This chapter describes the general requirements for genomic DNA sources and extraction methods. The success of this assay requires the amplification of PCR fragments between 200 and 1100 bp in size throughout the genome. To achieve this, the genomic DNA must be of high quality, and must be free of contaminants that would affect the enzymatic reactions carried out.

A genomic DNA control (Reference Genomic DNA 103) is provided in the Genome-Wide Human SNP Nsp/Sty Assay Kit 5.0. This control DNA meets the requirements outlined below. The size of the starting genomic DNA can be compared with Ref103 DNA to assess the quality. The control DNA should also be used as a routine experimental positive control and for troubleshooting.

Assay performance may vary for genomic DNA samples that do not meet the general requirements described below. However, the reliability of any given result should be assessed in the context of overall experimental design and goals.

General Requirements

- DNA must be double-stranded (not single-stranded).
 This requirement relates to the restriction enzyme digestion step in the protocol.

- DNA must be free of PCR inhibitors.
 Examples of inhibitors include high concentrations of heme (from blood) and high concentrations of chelating agents (i.e., EDTA). The genomic DNA extraction/purification method should render DNA that is generally salt-free because high concentrations of certain salts can also inhibit PCR and other enzyme reactions. DNA should be prepared as described in Chapter 4 Affymetrix® Genome-Wide Human SNP Nsp/Sty 5.0 Assay: 48 Sample Protocol.

- DNA must not be contaminated with other human genomic DNA sources, or with genomic DNA from other organisms.
 PCR amplification of the ligated genomic DNA is not human specific, so sufficient quantities of non-human DNA may also be amplified and could potentially result in compromised genotype calls. Contaminated or mixed DNA may manifest as high detection rates and low call rates.
DNA must not be highly degraded.

For any particular SNP, the genomic DNA fragment containing the SNP must have Nsp I (or Sty I) restriction sites intact so that ligation can occur on both ends of the fragment and PCR can be successful. The approximate average size of genomic DNA may be assessed on a 1% or 2% agarose gel using an appropriate size standard control. Reference Genomic DNA 103 can be run on the same gel for side-by-side comparison. High quality genomic DNA will run as a major band at approximately 10-20 kb on the gel.

Genomic DNA amplified with the Repli-G® Kit (a 29 whole genome amplification kit; QIAGEN) has been tested successfully with the Genome-Wide Human SNP 5.0 Nsp/Sty Assay. The Repli-G Kit was used to amplify 30 ng genomic DNA. The amplified products (without purification) were immediately used in the subsequent protocol steps (using 250 ng amplified DNA for each Nsp I and Sty I restriction digestion). This procedure gave BRLMM-P call rates averaging 97.7 + 0.3%, with an average concordance of 99.2 + 0.2%. Other pre-amplification methods or pre-digestion with restriction enzymes other than Nsp I or Sty I have not been tested by Affymetrix. If other methods are desired, we recommend conducting experiments to evaluate their performance with the Genome-Wide Human SNP 5.0 Nsp/Sty Assay.

Sources of Human Genomic DNA

The following sources of human genomic DNA have been successfully tested in the laboratories at Affymetrix for DNA that meets the requirements described in the section General Requirements on page 17.

- blood
- cell line

Success with other types of samples such as formalin-fixed paraffin-embedded tissue will depend on quality (degree of degradation, degree of inhibitors present, etc.), quantity of genomic DNA extracted, and purity of these types of samples, as described under General Requirements on page 17.

Genomic DNA Extraction/Purification Methods

Genomic DNA extraction and purification methods that meet the general requirements outlined above should yield successful results. Methods that include boiling or strong denaturants are not acceptable, because the DNA would be rendered single-stranded. Genomic DNA extracted using the following methods have been tested at Affymetrix:

1. SDS/ProK digestion, phenol-chloroform extraction, Microcon® or Centricon® (Millipore) ultrapurification and concentration.
2. QIAGEN; QIAamp® DNA Blood Maxi Kit.
DNA Cleanup

If a genomic DNA preparation is suspected to contain inhibitors, the following cleanup procedure can be used:

1. Add 0.5 volumes of 7.5 M NH₄OAc, 2.5 volumes of absolute ethanol (stored at –20°C), and 0.5 µL of glycogen (5 mg/mL) to 250 ng genomic DNA.
2. Vortex and incubate at –20°C for 1 hour.
3. Centrifuge at 12,000 x g in a microcentrifuge at room temperature for 20 minutes.
4. Remove supernatant and wash pellet with 0.5 mL of 80% ethanol.
5. Centrifuge at 12,000 x g at room temperature for 5 minutes.
6. Remove the 80% ethanol and repeat the 80% ethanol wash one more time.
7. Re-suspend the pellet in reduced EDTA TE buffer (10 mM Tris, pH 8.0, 0.1 mM EDTA, pH 8.0).

References

About This Protocol

The Genome-Wide Human SNP 5.0 Nsp/Sty Assay (Genome-Wide SNP 5.0 Assay) is designed for processing 48 samples. The protocol is presented in the following stages:

- Genomic DNA Plate Preparation
- Stage 1: Sty Restriction Enzyme Digestion
- Stage 2: Sty Ligation
- Stage 3: Sty PCR
- Stage 4: Nsp Restriction Enzyme Digestion
- Stage 5: Nsp Ligation
- Stage 6: Nsp PCR
- Stage 7: PCR Product Pooling and Purification
- Stage 8: Quantitation
- Stage 9: Fragmentation
- Stage 10: Labeling
- Stage 11: Target Hybridization

Key points regarding the various molecular biology steps that comprise whole-genome sampling analysis (WGSA) are included in the protocol and guidelines.

Successful performance of the various molecular biology steps in this protocol requires accuracy and attention to detail. Many of these stages involve specific yet distinct enzymatic reactions. For example, in stage 1, genomic DNA is digested with the restriction enzyme Sty I. In stage 2, it is ligated to a common adaptor with T4 DNA ligase. Following ligation, the template undergoes PCR using TITANIUM™ Taq DNA polymerase. Once the product has been purified (stage 7), it is then fragmented in stage 9 with Fragmentation Reagent (DNAse I), and end-labeled using terminal deoxynucleotidyl transferase (stage 10).

The stages involving enzymatic reactions are the most critical of the assay. Thus, it is important to carefully monitor and control any variables such as pH, salt concentrations, time, and temperature, all of which can adversely modulate enzyme activity.
Successful sample processing can be achieved by incorporating the following principles:

- Use only fresh reagents from the recommended vendors to help eliminate changes in pH or the salt concentration of buffers.
- Properly store all enzyme reagents. Storage methods can profoundly impact activity.
- When using reagents at the lab bench:
 - Ensure that enzymes are kept at –20 °C until needed.
 - Keep all master mixes and working solutions in chilled cooling chambers.
 - Properly chill essential equipment such as centrifuges, cooling chambers, and reagent coolers before use.
 - Since enzyme activity is a function of temperature, ensure that all temperature transitions are rapid and/or well-controlled to help maintain consistency across samples.
- Keep dedicated equipment in each of the areas used for this protocol (including pipettors, ice buckets, coolers, etc.). To avoid contamination, do not move equipment from one area to another.

Along with the enzymatic stages, lab instrumentation plays an important role in WGSA. To aid in maintaining consistency across samples and operators, all equipment should be well maintained and calibrated, including:

- All of the thermal cyclers (PCR Staging Room and Main Lab)
- GeneChip® Hybridization Oven 640
- GeneChip® Fluidics Station 450
- GeneChip® Scanner 3000 7G
- The UV spectrophotometer plate reader
- All multi-channel pipettes
Workflow Recommendations

Figure 4.1 shows the recommended workflow for one operator processing 48 samples.

Figure 4.1 shows the recommended workflow for one operator processing 48 samples.

Since WGSAP involves a series of ordered stages, the output of one stage directly impacts the performance of the subsequent stage. For example, the quantity and purity of the DNA after purification can affect the kinetics of the Fragmentation Reagent during the subsequent fragmentation stage.
To efficiently process samples in 96-well plates, it is essential that you be proficient with the use of multi-channel pipettes. Attempting to use a single channel pipette for plate-based samples requires too many pipetting steps, thus creating too high of a chance for error.

To familiarize yourself with the use of multi-channel pipettes, we strongly recommend practicing several times before processing actual samples. You can use water to get a feel for aspirating and dispensing solutions to multiple wells simultaneously.

Post-PCR stages 7 through 11 are best performed by the more experienced operators in your laboratory. These operators should be proficient in:

- The use of multi-channel pipettes
- High-throughput sample processing

When processing multiple full plates, we recommend that the same operator not perform too many stages in a given day. Dedicating small teams to different stages of the protocol has proven to be a highly effective method of managing this workflow.

For example, the full process can be sub-divided into four teams, with each team being responsible for the following stages:

- Team 1: Pre-PCR (digestion and ligation)
- Team 2: PCR (PCR and PCR product purification and quantitation)
- Team 3: Post-PCR (fragmentation and labeling)
- Team 4: Array processing (hybridization, fluidics, and scanning)

Your technical support representative can provide additional guidance on how best to organize lab personnel for this protocol.
Before You Begin

Master Mix Preparation
Carefully follow each master mix recipe. Use pipettes that have been calibrated to ± 5%. When molecular biology-grade water is specified, be sure to use the AccuGENE® water listed in Appendix A. Using in-house ddH₂O or other water can negatively affect your results. The enzymatic reaction in Stage 9: Fragmentation is particularly sensitive to pH and metal ion contamination.

If you run out of master mix during any of these procedures, a volume error has been made or the pipettes are not accurate. We recommend that you stop and repeat the experiment.

Reagent Handling and Storage
Follow these guidelines for reagent handling and storage.
- Keep dedicated equipment in each of the areas used for this protocol. To avoid contamination, do not move equipment between the Pre-PCR Area, the PCR Staging Room and the Main Lab.
- Unless otherwise indicated, keep all reagents (except enzymes) on ice in a cooling chamber that has been chilled to 4 °C when working on the bench top.
- Always leave enzymes at –20 °C until immediately prior to adding them to master mixes. When removed from the freezer, immediately place in a cooler that has been chilled to –20 °C and placed on ice.
- Store the reagents used for the restriction digestion, ligation and PCR steps in the Pre-PCR Clean Area.
- Consult the appropriate MSDS for reagent storage and handling requirements.
- Do not re-enter the Pre-PCR Clean Area after entering the PCR Staging Room or the Main Lab. Aliquot each of the reagents in the Pre-PCR Clean Area before starting the rest of the experiment.
- When performing the steps for Stages 1 through 10 of the 48-sample protocol:
 - Keep all tubes on ice or in a cooling chamber on ice.
 - Keep all plates in cooling chambers on ice.
Preparing the Work Area for Each Stage

Many of the stages in the Genome-Wide SNP 5.0 Assay must be performed rapidly and on ice to carefully control enzyme activity and temperature transitions. Therefore, we recommend that you set up all of the equipment, consumables and reagents (except for the enzymes) prior to beginning each stage.

Below is an illustration of the setup for Stage 1: Sty Restriction Enzyme Digestion. Pipettes and tips are not shown.

![Figure 4.2 Example of Work Area Preparation]
Thermal Cyclers, Plates and Plate Seals

The Genome-Wide SNP 5.0 Assay has been optimized using the following thermal cyclers, reaction plates and adhesive film.

IMPORTANT: Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1. Using other PCR plates and film that are incompatible with these thermal cyclers can result in crushed tubes, loss of sample, or poor results.

<table>
<thead>
<tr>
<th>Area</th>
<th>Thermal Cyclers Validated for Use</th>
<th>Plate</th>
<th>Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-PCR</td>
<td>Applied Biosystems units:</td>
<td>Multiplate 96-Well Unskirted PCR Plates</td>
<td>MicroAmp® Clear Adhesive Films</td>
</tr>
<tr>
<td></td>
<td>• 2720 Thermal Cycler</td>
<td>Bio-Rad, P/N MLP-9601</td>
<td>Applied Biosystems, P/N 4306311</td>
</tr>
<tr>
<td></td>
<td>• GeneAmp® PCR System 9700</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bio-Rad units:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MJ Tetrad PTC-225</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DNA Engine Tetrad 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR and Post-PCR</td>
<td>Applied Biosystems:</td>
<td>Multiplate 96-Well Unskirted PCR Plates</td>
<td>MicroAmp® Clear Adhesive Films</td>
</tr>
<tr>
<td></td>
<td>GeneAmp® PCR System 9700 (silver block or gold-plated silver block)</td>
<td>Bio-Rad, P/N MLP-9601</td>
<td>Applied Biosystems, P/N 4306311</td>
</tr>
<tr>
<td></td>
<td>Bio-Rad units:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MJ Tetrad PTC-225</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DNA Engine Tetrad 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program Your Thermal Cyclers

The thermal cycler programs listed below are used during this protocol. Before you begin processing samples, enter and store these programs on the appropriate thermal cyclers in the PCR Staging Room and the Main Lab.

Thermal cycler program details are listed in Appendix B, *Thermal Cycler Programs*.

Table 4.2 Thermal Cycler Programs Required for the 48 Sample Protocol (Figure 4.1 on page 23)

<table>
<thead>
<tr>
<th>Program Name</th>
<th># of Thermal Cyclers Required</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW5.0 Digest</td>
<td>1</td>
<td>PCR Staging Room</td>
</tr>
<tr>
<td>GW5.0 Ligate</td>
<td>1</td>
<td>PCR Staging Room</td>
</tr>
<tr>
<td>GW5.0 PCR</td>
<td>4</td>
<td>Main Lab</td>
</tr>
<tr>
<td>GW5.0 Fragment</td>
<td>1</td>
<td>Main Lab</td>
</tr>
<tr>
<td>GW5.0 Label</td>
<td>1</td>
<td>Main Lab</td>
</tr>
<tr>
<td>GW5.0 Hyb</td>
<td>1</td>
<td>Main Lab</td>
</tr>
</tbody>
</table>
Genomic DNA Plate Preparation

About this Stage
The human genomic DNA you will process using the Genome-Wide SNP 5.0 Assay should meet the general requirements listed in Chapter 3, Genomic DNA General Requirements. During this stage, you will prepare the genomic DNA by:

1. Determining the concentration of each sample.
2. Diluting each sample to 50 ng/µL using reduced EDTA TE buffer.
3. Aliquoting 5 µL of each sample to the corresponding wells of two 96-well plates.

Location and Duration

- PCR Staging Room
- Hands-on time: time will vary; can be up to 4 hours

Input Required
This protocol is written for processing two replicates of 48 genomic DNA samples including controls.

Table 4.3 Input Required for Genomic DNA Plate Preparation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Genomic DNA samples that meet the general requirements listed in Chapter 3, Genomic DNA General Requirements.</td>
</tr>
</tbody>
</table>
Equipment and Consumables Required

The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

Table 4.4 Equipment and Consumables Required for Genomic DNA Plate Preparation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>enough for three 96-well plates</td>
<td>Cooling chambers, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P200</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P200</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips</td>
</tr>
<tr>
<td>As needed (2 per sample)</td>
<td>Reaction plates, 96-well**</td>
</tr>
<tr>
<td>As needed</td>
<td>Plate seals**</td>
</tr>
<tr>
<td>1</td>
<td>Spectrophotometer plate reader</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>

** IMPORTANT: ** Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information.

Table 4.5 Reagents Required for Genomic DNA Plate Preparation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>As needed</td>
<td>Reduced EDTA TE Buffer</td>
</tr>
<tr>
<td></td>
<td>(10 mM Tris HCL, 0.1 mM EDTA, pH 8.0)</td>
</tr>
</tbody>
</table>

Preparation of the Genomic DNA Plate

This protocol has been optimized using UV absorbance to determine genomic DNA concentrations. Other quantitation methods such as PicoGreen may give different readings. Therefore, you should correlate readings from other methods to the equivalent UV absorbance reading.

To prepare the genomic DNA plate:

1. Thoroughly mix the genomic DNA by vortexing at high speed for 3 sec.
2. Determine the concentration of each genomic DNA sample.
3. Based on OD measurements, dilute each sample to 50 ng/µL using reduced EDTA TE buffer.
 Apply the convention that 1 absorbance unit at 260 nm equals 50 µg/mL for double-stranded DNA. This convention assumes a path length of 1 cm. Consult your spectrophotometer handbook for more information. If using a quantitation method other than UV absorbance, correlate the reading to the equivalent UV absorbance reading.
4. Thoroughly mix the diluted DNA by vortexing at high speed for 3 sec.

IMPORTANT: An elevated EDTA level may interfere with subsequent reactions.
Aliquoting Prepared Genomic DNA

To aliquot the prepared genomic DNA:

1. Vortex the plate of genomic DNA at high speed for 10 sec, then spin down at 2000 rpm for 30 sec.

2. Aliquot 5 µL of each DNA to the corresponding wells of two 96-well reaction plates. 5 µL of the 50 ng/µL working stock is equivalent to 250 ng genomic DNA per well. Two replicates of each sample are required for this protocol: one for Nsp and one for processing Sty.

3. Seal each plate with adhesive film.

What To Do Next

Do one of the following:

- Proceed to the next stage, processing one plate of samples, one enzyme at a time.
- Store the sealed plates of diluted genomic DNA at –20 °C.
Stage 1: Sty Restriction Enzyme Digestion

About this Stage
During this stage, the genomic DNA is digested by the Sty I restriction enzyme. You will:
1. Prepare a Sty Digestion Master Mix.
2. Add the master mix to one set of 48 samples.
3. Place the samples onto a thermal cycler and run the GW5.0 Digest program.

Location and Duration
- Pre-PCR Clean Area
- Hands-on time: 30 minutes
- GW5.0 Digest thermal cycler program time: 2.5 hours

Input Required From Previous Stage
The input required is shown below.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 samples</td>
<td>Genomic DNA prepared as instructed under Genomic DNA Plate Preparation on page 29 (5 µL at 50 ng/µL in each well).</td>
</tr>
</tbody>
</table>
Equipment and Consumables Required

The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

IMPORTANT: Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.

Table 4.6 Equipment and Consumables Required for Stage 1: Sty Restriction Enzyme Digestion

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooler, chilled to –20 °C</td>
</tr>
<tr>
<td>1</td>
<td>Cooling chamber, double, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Marker, fine point, permanent</td>
</tr>
<tr>
<td>1</td>
<td>Microcentrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P100</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P200</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P1000</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P20</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Thermal cycler**</td>
</tr>
<tr>
<td>1 strip</td>
<td>Tubes, 12-strip, 0.2 mL</td>
</tr>
<tr>
<td>1</td>
<td>Tube, Eppendorf 2.0 mL</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient for processing 48 samples.

Table 4.7 Reagents Required for Stage 1: Sty Restriction Enzyme Digestion

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vial</td>
<td>BSA (100X; 10 mg/mL)</td>
</tr>
<tr>
<td>1 vial</td>
<td>NE Buffer 3 (10X)</td>
</tr>
<tr>
<td>1 vial</td>
<td>Sty I (10 U/µL; NEB)</td>
</tr>
<tr>
<td>2.5 mL</td>
<td>AccuGENE® Water, molecular biology-grade</td>
</tr>
</tbody>
</table>

Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

IMPORTANT: The same team or individual operator should not perform Nsp I and Sty I digestion reactions on the same day.

About Using Controls

Positive Controls

We recommend including one positive and one negative control with every set of samples run.

Reference Genomic DNA 103 can be used as a positive control. It is supplied in the Genome-Wide Human SNP Nsp/Sty Assay Kit 5.0.

A process negative control can be included at the beginning of the assay to assess the presence of contamination. Refer to Chapter 3 and Chapter 7 for more information.
Prepare the Reagents, Equipment and Consumables

Thaw Reagents and Genomic DNA

1. Allow the following reagents to thaw on ice:
 • NE Buffer 3
 • BSA
2. If the genomic DNA is frozen, allow it to thaw in a cooling chamber on ice.

 IMPORTANT: Leave the STY I enzyme at –20 °C until ready to use.

Prepare Your Work Area

To prepare the work area:

1. Place a double cooling chamber and a cooler on ice (Figure 4.3 on page 37).
2. Label the following tubes, then place in the cooling chamber:
 • One strip of 12 tubes labeled Dig
 • A 2.0 mL Eppendorf tube labeled Dig MM
3. Place the AccuGENE water on ice.
4. Prepare the plate with genomic DNA as follows:
 A. Vortex the center of the plate at high speed for 3 sec.
 B. Spin down the plate at 2000 rpm for 30 sec.
 C. Place back in the cooling chamber on ice.
5. Prepare the reagents (except for the enzyme) as follows:
 A. Vortex 3 times, 1 sec each time.
 B. Pulse spin for 3 sec.
 C. Place in the cooling chamber.

Preheat the Thermal Cycler Lid

Power on the thermal cycler to preheat the lid. Leave the block at room temperature.
Prepare the Sty Digestion Master Mix

Keeping all reagents and tubes on ice, prepare the Digestion Master Mix as follows:

1. To the 2.0 mL Eppendorf tube, add the volumes of the following reagents as shown in Table 4.8:
 - AccuGENE water
 - NE Buffer 3
 - BSA

2. Remove the Sty I enzyme from the freezer and immediately place in a cooler.
3. Pulse spin the enzyme for 3 sec.
4. Immediately add the enzyme to the master mix, then place remaining enzyme back in the cooler.
5. Vortex the master mix at high speed 3 times, 1 sec each time.
6. Pulse spin for 3 sec.
7. Place in the cooling chamber.
8. Return any remaining enzyme to the freezer.
9. Proceed immediately to Add Sty Digestion Master Mix to Samples on page 38.
Add Sty Digestion Master Mix to Samples

To add the Sty Digestion Master Mix to samples:

1. Using a single channel P200 pipette, aliquot 67 µL of Sty Digestion Master Mix to each tube of the strip tubes labeled Dig.

2. Using a 12-channel P20 pipette, add 14.75 µL of Sty Digestion Master Mix to each DNA sample in the cooling chamber on ice.
 The total volume in each well is now 19.75 µL.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 Sample</th>
<th>48 Samples (15% extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuGENE® Water</td>
<td>11.55 µL</td>
<td>637.6 µL</td>
</tr>
<tr>
<td>NE Buffer 3 (10X)</td>
<td>2 µL</td>
<td>110.4 µL</td>
</tr>
<tr>
<td>BSA (100X; 10 mg/mL)</td>
<td>0.2 µL</td>
<td>11 µL</td>
</tr>
<tr>
<td>Sty I (10 U/µL)</td>
<td>1 µL</td>
<td>55.2 µL</td>
</tr>
<tr>
<td>Total</td>
<td>14.75 µL</td>
<td>814.2 µL</td>
</tr>
</tbody>
</table>

3. Seal the plate tightly with adhesive film.
4. Vortex the center of the plate at high speed for 3 sec.
5. Spin down the plate at 2000 rpm for 30 sec.
6. Ensure that the lid of thermal cycler is preheated.
7. Load the plate onto the thermal cycler and run the GW5.0 Digest program.
8. When the program is finished, remove the plate and spin it down at 2000 rpm for 30 sec.

What To Do Next

Do one of the following:

- If following the recommended workflow (Figure 4.1 on page 23), place the plate in a cooling chamber on ice and proceed immediately to *Stage 2: Sty Ligation on page 40*.
- If not proceeding directly to the next step, store the samples at –20 °C.

Table 4.9 GW5.0 Digest Program

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 °C</td>
<td>120 minutes</td>
</tr>
<tr>
<td>65 °C</td>
<td>20 minutes</td>
</tr>
<tr>
<td>4 °C</td>
<td>Hold</td>
</tr>
</tbody>
</table>
Stage 2: Sty Ligation

About this Stage
During this stage, the digested samples are ligated using the Sty Adaptor. You will:
1. Prepare a Sty Ligation Master Mix.
2. Add the master mix to the samples.
3. Place the samples onto a thermal cycler and the GW5.0 Ligate program is run.
4. Dilute the ligated samples with AccuGENE water.

Location and Duration
- Pre-PCR Clean Area
- Hands-on time: 30 minutes
- GW5.0 Ligate thermal cycler program time: 3.3 hours

Input Required From Previous Stage
The input required from *Stage 1: Sty Restriction Enzyme Digestion* is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 samples</td>
<td>Sty digested samples in a cooling chamber on ice.</td>
</tr>
</tbody>
</table>
Equipment and Consumables Required

The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

Table 4.10 Equipment and Consumables Required for Stage 2: Sty Ligation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooler, chilled to –20 °C</td>
</tr>
<tr>
<td>1</td>
<td>Cooling chamber, double, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Marker, fine point, permanent</td>
</tr>
<tr>
<td>1</td>
<td>Microcentrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P100</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P1000</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P200</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>2</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Solution basin, 55 mL</td>
</tr>
<tr>
<td>1</td>
<td>Thermal cycler**</td>
</tr>
<tr>
<td>1 strip</td>
<td>Tubes, 12-strip, 0.2 mL</td>
</tr>
<tr>
<td>1</td>
<td>Tube, Eppendorf 2.0 mL</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>

** IMPORTANT: ** Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 samples.

Table 4.11 Reagents Required for Stage 2: Sty Ligation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vial</td>
<td>T4 DNA Ligase (400 U/µL; NEB)</td>
</tr>
<tr>
<td>1 vial</td>
<td>T4 DNA Ligase Buffer (10X)</td>
</tr>
<tr>
<td>1 vial</td>
<td>Adaptor, Sty (50 µM)</td>
</tr>
<tr>
<td>10 mL</td>
<td>AccuGENE water, molecular biology-grade</td>
</tr>
</tbody>
</table>

Important Information About This Procedure

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

Prepare the Reagents, Consumables and Other Components

1. **IMPORTANT:**
 - Aliquot the T4 DNA Ligase Buffer (10X) after thawing for the first time to avoid multiple freeze-thaw cycles. See vendor instructions.
 - Be sure to use the Sty adaptor.

Thaw the Reagents and Sty Digestion Stage Plate

To thaw the reagents and Sty Digestion Stage Plate:

1. Allow the following reagents to thaw on ice:
 - Adaptor Sty I
 - T4 DNA Ligase Buffer (10X)
 Requires approximately 20 minutes to thaw.
2. If the Sty digested samples were frozen, allow them to thaw in a cooling chamber on ice.

1. **IMPORTANT:** Leave the T4 DNA Ligase at –20 °C until ready to use.
Prepare Your Work Area

To prepare the work area:

1. Place a double cooling chamber and a cooler on ice (Figure 4.2 on page 26).
2. Label the following tubes, then place in the cooling chamber:
 - One strip of 12 tubes labeled Lig
 - A 2.0 mL Eppendorf tube labeled Lig MM
 - Solution basin
3. Prepare the digested samples as follows:
 - A. Vortex the center of the plate at high speed for 3 sec.
 - B. Spin down the plate at 2000 rpm for 30 sec.
 - C. Place back in the cooling chamber on ice.
4. To prepare the reagents:
 - A. Vortex at high speed 3 times, 1 sec each time (except for the enzyme).
 - B. Pulse spin for 3 sec.
 - C. Place in the cooling chamber.

IMPORTANT: T4 DNA Ligase Buffer (10X) contains ATP and should be thawed on ice. Vortex the buffer as long as necessary before use to ensure precipitate is re-suspended and that the buffer is clear. Avoid multiple freeze-thaw cycles per vendor instructions.

Preheat the Thermal Cycler Lid

Power on the thermal cycler to preheat the lid. Leave the block at room temperature. The lid must be preheated before samples are loaded.
Prepare the Sty Ligation Master Mix

Keeping all reagents and tubes on ice, prepare the Sty Ligation Master Mix as follows:

1. To the 2.0 mL Eppendorf tube, add the following reagents based on the volumes shown in Table 4.12:
 - Adaptor Sty I
 - T4 DNA Ligase Buffer (10X)
2. Remove the T4 DNA Ligase from the freezer and immediately place in the cooler on ice.
3. Pulse spin the T4 DNA Ligase for 3 sec.
4. Immediately add the T4 DNA Ligase to the master mix; then place back in the cooler.
5. Vortex the master mix at high speed 3 times, 1 sec each time.
6. Pulse spin for 3 sec.
7. Place the master mix on ice.
8. Proceed immediately to Add Sty Ligation Master Mix to Reactions.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 Sample</th>
<th>48 Samples (25% extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4 Ligase Buffer (10X)</td>
<td>2.5 µL</td>
<td>150 µL</td>
</tr>
<tr>
<td>Adaptor Sty I (50 µM)</td>
<td>0.75 µL</td>
<td>45 µL</td>
</tr>
<tr>
<td>T4 DNA Ligase (400U/µL)</td>
<td>2 µL</td>
<td>120 µL</td>
</tr>
<tr>
<td>Total</td>
<td>5.25 µL</td>
<td>315 µL</td>
</tr>
</tbody>
</table>

Add Sty Ligation Master Mix to Reactions

To add Sty Ligation Master Mix to samples:

1. Using a single channel P100 pipette, aliquot 25 µL of Sty Ligation Master Mix to each tube of the strip tubes on ice.
2. Using a 12-channel P20 pipette, aliquot 5.25 µL of Sty Ligation Master Mix to each reaction on the Sty Digestion Stage Plate.
 The total volume in each well is now 25 µL.
3. Seal the plate tightly with adhesive film.
4. Vortex the center of the plate at high speed for 3 sec.
5. Spin down the plate at 2000 rpm for 30 sec.
6. Ensure that the thermal cycler lid is preheated.
7. Load the plate onto the thermal cycler and run the GW5.0 Ligate program.

Table 4.13 GW5.0 Ligate Thermal Cycler Program

<table>
<thead>
<tr>
<th>GW5.0 Ligate Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>16°C</td>
</tr>
<tr>
<td>70°C</td>
</tr>
<tr>
<td>4°C</td>
</tr>
</tbody>
</table>

Sty Digested DNA	19.75 µL
Sty Ligation Master Mix*	5.25 µL
Total	25 µL
* Contains ATP and DTT. Keep on ice.	
Dilute the Samples

IMPORTANT: It is crucial to dilute the ligated DNA with AccuGENE water prior to PCR.

To dilute the samples:

8. Place the AccuGENE water on ice 20 minutes prior to use.
1. When the GW5.0 Ligate program is finished, remove the plate and spin it down at 2000 rpm for 30 sec.
2. Place the plate in a cooling chamber on ice.
3. Dilute each reaction as follows:
 A. Pour 10 mL AccuGENE water into the solution basin.
 B. Using a 12-channel P200 pipette, add 75 µL of the water to each reaction. The total volume in each well is 100 µL.

<table>
<thead>
<tr>
<th>Sty Ligated DNA</th>
<th>25 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuGENE water</td>
<td>75 µL</td>
</tr>
<tr>
<td>Total</td>
<td>100 µL</td>
</tr>
</tbody>
</table>

4. Seal the plate tightly with adhesive film.
5. Vortex the center of the plate at high speed for 3 sec.

What To Do Next

Do one of the following:

- If following the recommended workflow ([Figure 4.1 on page 23](#)), proceed immediately to *Stage 3: Sty PCR on page 47*.
 Store the plate in a cooling chamber on ice for up to 60 minutes.
- If not proceeding directly to the next step, store the plate at −20 °C.
Stage 3: Sty PCR

About this Stage

During this stage, you will:

1. Transfer equal amounts of each Sty ligated sample into three fresh 96-well plates (Figure 4.4 on page 52).
2. Prepare the Sty PCR Master Mix, and add it to each sample.
3. Place each plate on a thermal cycler and run the GW 5.0 PCR program.
4. Confirm the PCR by running 3 µL of each PCR product on a 2% TBE gel or an E-Gel® 48 2% agarose gel.

Location and Duration

- Pre-PCR Clean Area: Sty PCR Master Mix preparation
- PCR Staging Area: PCR set up
- Main Lab: PCR Plates placed on thermal cyclers
- Hands-on time: 1 hour
- GW5.0 PCR thermal cycler program time: 1.5 hours; samples can be held overnight at 4 °C.

Input Required from Previous Stage

The input required from Stage 2: Sty Ligation is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Diluted Sty ligated samples</td>
</tr>
</tbody>
</table>
Equipment and Materials Required

The following equipment and materials are required to perform this stage. Refer to Appendix A for vendor and part number information.

Table 4.14 Equipment and Consumables Required for **Stage 3: Sty PCR**

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooler, chilled to –20 °C</td>
</tr>
<tr>
<td></td>
<td>Enough for up to five 96-well plates</td>
</tr>
<tr>
<td>1</td>
<td>Cooling chambers, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Marker, fine point, permanent</td>
</tr>
<tr>
<td>1</td>
<td>Microcentrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P100</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P200</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P1000</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P200</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>3</td>
<td>Plates, 96-well reaction**</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>As needed</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Solution basin, 55 mL</td>
</tr>
<tr>
<td>3</td>
<td>Thermal cycler**</td>
</tr>
<tr>
<td>1</td>
<td>Tube, Falcon 50 mL</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>

IMPORTANT: **Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.**
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 samples.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mL</td>
<td>AccuGENE water, molecular biology-grade</td>
</tr>
<tr>
<td>1 vial</td>
<td>PCR Primer 002 (100 µM)</td>
</tr>
<tr>
<td></td>
<td>The following reagents from the Clontech TITANIUM™ DNA Amplification Kit:</td>
</tr>
<tr>
<td></td>
<td>• dNTPs (2.5 mM each)</td>
</tr>
<tr>
<td></td>
<td>• GC-Melt (5M)</td>
</tr>
<tr>
<td></td>
<td>• TITANIUM™ Taq DNA Polymerase (50X)</td>
</tr>
<tr>
<td></td>
<td>• TITANIUM™ Taq PCR Buffer (10X)</td>
</tr>
</tbody>
</table>

Gels and Related Materials Required

Verifying the PCR reaction is required for this stage. You can use the following gels and related materials, or E-Gels as described in Appendix C, E-gels, on page 211. The amounts listed are sufficient to process 48 Sty samples.

Refer to Appendix A for vendor and part number information.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 µL</td>
<td>DNA Marker</td>
</tr>
<tr>
<td>19</td>
<td>Gels, 2% TBE</td>
</tr>
<tr>
<td>As needed</td>
<td>Gel loading solution</td>
</tr>
<tr>
<td>3</td>
<td>Plates, 96-well reaction</td>
</tr>
</tbody>
</table>
Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

1. **IMPORTANT:**
 - Make sure the Sty ligated DNA was diluted to 100 µL with AccuGENE water.
 - Set up the PCRs in PCR Staging Area.
 - Prepare Sty PCR Master Mix immediately prior to use, and prepare in Pre-PCR Clean room. To help ensure the correct distribution of fragments, be sure to add the correct amount of primer to the master mix. Mix the master mix well to ensure the even distribution of primers.
 - To ensure consistent results, take 3 µL aliquots from each PCR to run on gels.

About Controls

A PCR negative control can be included in the experiment to assess the presence of contamination. Refer to Chapter 3 and Chapter 7 for more information.

Prepare the Reagents, Consumables and Other Components

Thaw Reagents and Ligated Samples

To thaw the reagents and ligated samples:

1. Allow the following reagents to thaw on ice.
 - TITANIUM Taq PCR Buffer
 - dNTPs
 - PCR Primer 002

 IMPORTANT: Leave the TITANIUM Taq DNA Polymerase at –20 °C until ready to use.

2. If the Sty ligated samples are frozen, allow to thaw in a cooling chamber on ice.
Prepare Your Work Area (Pre-PCR Clean Area)

To prepare the work area:

1. Place two double cooling chambers and one cooler on ice.
2. Label the following, then place in a cooling chamber:
 - Three 96-well reaction plates labeled P1, P2, P3 (see Figure 4.4 on page 52)
 - One 50 mL Falcon tube labeled PCR MM
3. Place on ice:
 - AccuGENE water
 - GC-Melt
 - Solution basin
4. Prepare the Sty ligated samples as follows:
 - A. Vortex the center of the plate at high speed for 3 sec.
 - B. Spin down the plate at 2000 rpm for 30 sec.
 - C. Label the plate Lig.
 - D. Place back in the cooling chamber on ice.
5. To prepare the reagents:
 - A. Vortex at high speed 3 times, 1 sec each time (except for the enzyme).
 - B. Pulse spin for 3 sec.
 - C. Place in a cooling chamber.

Preheat the Thermal Cycler Lids (Main Lab)

Have someone in the Main Lab power on the thermal cyclers to be used for PCR to preheat the lids. The lids must be preheated before loading samples; leave the blocks at room temperature.

If you are preparing the plates for PCR, it is best not to go from the Pre-PCR Room or Staging Area to the Main Lab and then back again.

Aliquot Sty Ligated DNA to the PCR Plates

To aliquot Sty ligated DNA to the PCR plates:

1. Working one row at a time and using a 12-channel P20 pipette, transfer 10 µL of each Sty ligated sample to the corresponding well of each PCR plate.
 Example (Figure 4.4): Transfer 10 µL of each sample from Row A of the Sty Ligation Stage Plate to the corresponding wells of row A on the plates labeled P1, P2, and P3.
2. Seal each plate with adhesive film, and leave in cooling chambers on ice.
Prepare the Sty PCR Master Mix

Location
Pre-PCR Clean Room

Prepare the Sty PCR Master Mix

To prepare the Sty PCR Master Mix:

1. **IMPORTANT:** The PCR reaction is sensitive to the concentration of primer used. It is critical that the correct amount of primer be added to the PCR Master Mix to achieve the correct distribution of fragments (200 to 1100 bp) in the products.

Check the PCR reactions on a gel to ensure that the distribution is correct.

An equal aliquot of each sample from the Ligation Plate is transferred to the corresponding well of each PCR Plate. For example, an equal aliquot of each sample from row A on the Sty Ligation Plate is transferred to the corresponding wells of row A on PCR Plates P1, P2 and P3.

Figure 4.4 Transferring Equal Aliquots of Diluted, Ligated Sty Samples to Three Reaction Plates
2. Remove the TITANIUM *Taq* DNA Polymerase from the freezer and immediately place in a cooler.

3. Pulse spin the *Taq* DNA polymerase for 3 sec.

4. Immediately add the *Taq* DNA polymerase to the master mix; then return the tube to the cooler on ice.

5. Vortex the master mix at high speed 3 times, 1 sec each time.

6. Pour the mix into the solution basin, keeping the basin on ice.

Table 4.17 Sty PCR Master Mix for 48 Samples

<table>
<thead>
<tr>
<th>Reagent</th>
<th>For 1 Reaction</th>
<th>3 PCR Plates, 48 Samples Each Plate (15% extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuGENE water</td>
<td>39.5 µL</td>
<td>6.541 mL</td>
</tr>
<tr>
<td>TITANIUM Taq PCR Buffer (10X)</td>
<td>10 µL</td>
<td>1.656 mL</td>
</tr>
<tr>
<td>GC-Melt (5M)</td>
<td>20 µL</td>
<td>3.312 mL</td>
</tr>
<tr>
<td>dNTP (2.5 mM each)</td>
<td>14 µL</td>
<td>2.318 mL</td>
</tr>
<tr>
<td>PCR Primer 002 (100 µM)</td>
<td>4.5 µL</td>
<td>0.745 mL</td>
</tr>
<tr>
<td>TITANIUM Taq DNA Polymerase (50X)</td>
<td>2 µL</td>
<td>0.331 mL</td>
</tr>
<tr>
<td>Total</td>
<td>90 µL</td>
<td>14.903 mL</td>
</tr>
</tbody>
</table>
Add Sty PCR Master Mix to Samples

Location
PCR Staging Area

Procedure

To add Sty PCR Master Mix to samples:

1. Using a 12-channel P200 pipette, add 90 µL Sty PCR Master Mix to each sample. To avoid contamination, change pipette tips after each dispense. The total volume in each well is 100 µL.
2. Seal each reaction plate tightly with adhesive film.
3. Vortex the center of each reaction plate at high speed for 3 sec.
4. Spin down the plates at 2000 rpm for 30 sec.
5. Keep the reaction plates in cooling chambers on ice until loaded onto the thermal cyclers.

Load Sty PCR Plates Onto Thermal Cyclers

IMPORTANT: PCR protocols for the MJ Tetrad PTC-225 and Applied Biosystems thermal cyclers are different. See Table 4.18 and Table 4.19 below.

Location
Main Lab

Procedure

To load the plates and run the GW5.0 PCR program:

1. Transfer the plates to the Main Lab.
2. Ensure that the thermal cycler lids are preheated. The block should be at room temperature.
3. Load each reaction plate onto a thermal cycler.
4. Run the GW5.0 PCR program. The program varies depending upon the thermal cyclers you are using. See Table 4.18 for Applied Biosystems thermal cyclers and Table 4.19 for Bio-Rad thermal cyclers.
IMPORTANT: If using GeneAmp® PCR System 9700 thermal cyclers, be sure the blocks are silver or gold-plated silver. Do NOT use thermal cyclers with aluminum blocks. It is not easy to visually distinguish between silver and aluminum blocks.

Table 4.18 GW5.0 PCR Thermal Cycler Program for the GeneAmp® PCR System 9700 (silver or gold-plated silver blocks)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>3 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>94°C</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>45 sec</td>
<td>30X</td>
</tr>
<tr>
<td>68°C</td>
<td>15 sec</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>7 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>4°C</td>
<td>HOLD (Can be held overnight)</td>
<td></td>
</tr>
</tbody>
</table>

Volume: 100 µL
Specify Maximum mode.

Table 4.19 GW5.0 PCR Thermal Cycler Program for the MJ Tetrad PTC-225

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>3 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>94°C</td>
<td>30 sec</td>
<td>30X</td>
</tr>
<tr>
<td>60°C</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>15 sec</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>7 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>4°C</td>
<td>HOLD (Can be held overnight)</td>
<td></td>
</tr>
</tbody>
</table>

Volume: 100 µL
Use Heated Lid and Calculated Temperature
Running Gels

The instructions below are for running 2% TBE gels. For information on running E-Gel 48 2% agarose gels, refer to Appendix C, E-gels, on page 211.

Before Running Gels

To ensure consistent results, take 3 µL aliquot from each PCR.

⚠️ WARNING: Wear the appropriate personal protective equipment when handling ethidium bromide.

Run the Gels

When the GW5.0 PCR program is finished:

1. Remove each plate from the thermal cycler.
2. Spin down plates at 2000 rpm for 30 sec.
3. Place plates in cooling chambers on ice or keep at 4 °C.
4. Label three fresh 96-well reaction plates P1Gel, P2Gel and P3Gel.
5. Aliquot 3 µL of 2X Gel Loading Dye to each well in rows A through D of the fresh, labeled PXGel plates.
6. Using a 12-channel P20 pipette, transfer 3 µL of each PCR product from the 3 Sty PCR plates to the corresponding plate, row and wells of the PXGel plates.
 Example: 3 µL of each PCR product from each well of row A on plate P1 is transferred to the corresponding wells of row A on plate P1Gel.
7. Seal the PXGel plates.
8. Vortex the center of each PXGel plate, then spin them down at 2000 rpm for 30 sec.
9. Load the total volume from each well of each PXGel plate onto 2% TBE gels.
10. Run the gels at 120V for 40 minutes to 1 hour.
11. Verify that the PCR product distribution is between ~250 bp to 1100 bp (see Figure 4.5).
What To Do Next

Do one of the following:

- If following the recommended workflow (Figure 4.1 on page 23), seal the Sty PCR product plates and store them at –20 °C.
- Proceed to the next stage within 60 minutes.
Stage 4: Nsp Restriction Enzyme Digestion

About this Stage
During this stage, the genomic DNA is digested by the Nsp I enzyme. You will:
1. Prepare a Nsp Digestion Master Mix.
2. Add the master mix to one set of 48 samples.
3. Place the samples onto a thermal cycler and run the GW5.0 Digest program.

Location and Duration
- Pre-PCR Clean Area
- Hands-on time: 30 minutes
- GW5.0 Digest thermal cycler program time: 2.5 hours

Input Required From Previous Stage
The input required is shown below.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 samples</td>
<td>Genomic DNA prepared as instructed under Genomic DNA Plate Preparation on page 29 (5 µL at 50 ng/µL in each well).</td>
</tr>
</tbody>
</table>
Equipment and Consumables Required

The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

IMPORTANT: **Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.**

Table 4.20 Equipment and Consumables Required for *Stage 4: Nsp Restriction Enzyme Digestion*

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooler, chilled to –20 °C</td>
</tr>
<tr>
<td>1</td>
<td>Cooling chamber, double, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Marker, fine point, permanent</td>
</tr>
<tr>
<td>1</td>
<td>Microcentrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P100</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P200</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P1000</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P20</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Thermal cycler**</td>
</tr>
<tr>
<td>1 strip</td>
<td>Tubes, 12-strip, 0.2 mL</td>
</tr>
<tr>
<td>1</td>
<td>Tube, Eppendorf 2.0 mL</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient for processing 48 samples.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vial</td>
<td>BSA (100X; 10 mg/mL)</td>
</tr>
<tr>
<td>1 vial</td>
<td>NE Buffer 2 (10X)</td>
</tr>
<tr>
<td>1 vial</td>
<td>Nsp I (10 U/µL; NEB)</td>
</tr>
<tr>
<td>2.5 mL</td>
<td>AccuGENE® Water, molecular biology-grade</td>
</tr>
</tbody>
</table>

Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

IMPORTANT: The same team or individual operator should not perform Nsp 1 and Sty 1 digestion reactions on the same day.

About Using Controls

Positive Controls

We recommend including one positive and one negative control with every set of samples run.

Reference Genomic DNA 103 can be used as a positive control. It is supplied in the Genome-Wide Human SNP Nsp/Sty Assay Kit 5.0.

A process negative control can be included at the beginning of the assay to assess the presence of contamination. Refer to Chapter 3 and Chapter 7 for more information.
Prepare the Reagents, Equipment and Consumables

Thaw Reagents and Genomic DNA

1. Allow the following reagents to thaw on ice:
 • NE Buffer 2
 • BSA
2. If the genomic DNA is frozen, allow it to thaw in a cooling chamber on ice.

IMPORTANT: Leave the NSP I enzyme at –20 °C until ready to use.

Prepare Your Work Area

To prepare the work area:

1. Place a double cooling chamber and a cooler on ice.
2. Label the following tubes, then place in the cooling chamber:
 • One strip of 12 tubes labeled *Dig*
 • A 2.0 mL Eppendorf tube labeled *Dig MM*
3. Place the AccuGENE water on ice.
4. Prepare the plate with genomic DNA as follows:
 A. Vortex the center of the plate at high speed for 3 sec.
 B. Spin down the plate at 2000 rpm for 30 sec.
 C. Place back in the cooling chamber on ice.
5. Prepare the reagents (except for the enzyme) as follows:
 A. Vortex 3 times, 1 sec each time.
 B. Pulse spin for 3 sec.
 C. Place in the cooling chamber.

Preheat the Thermal Cycler Lid

Power on the thermal cycler to preheat the lid. Leave the block at room temperature.
Prepare the Nsp Digestion Master Mix

Keeping all reagents and tubes on ice, prepare the Nsp Digestion Master Mix as follows:

1. To the 2.0 mL Eppendorf tube, add the appropriate volumes of the following reagents based on Table 4.22:
 - AccuGENE water
 - NE Buffer 2
 - BSA
2. Remove the Nsp I enzyme from the freezer and immediately place in a cooler.
3. Pulse spin the enzyme for 3 sec.
4. Immediately add the enzyme to the master mix, then place remaining enzyme back in the cooler.
5. Vortex the master mix at high speed 3 times, 1 sec each time.
6. Pulse spin for 3 sec.
7. Place in the cooling chamber.
8. Return any remaining enzyme to the freezer.
9. Proceed immediately to Add Nsp Digestion Master Mix to Samples on page 63.

Table 4.22 Nsp I Digestion Master Mix

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 Sample</th>
<th>48 Samples (15% extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuGENE® Water</td>
<td>11.55 µL</td>
<td>637.6 µL</td>
</tr>
<tr>
<td>NE Buffer 2 (10X)</td>
<td>2 µL</td>
<td>110.4 µL</td>
</tr>
<tr>
<td>BSA (100X; 10 mg/mL)</td>
<td>0.2 µL</td>
<td>11 µL</td>
</tr>
<tr>
<td>Nsp I (10 U/µL)</td>
<td>1 µL</td>
<td>55.2 µL</td>
</tr>
<tr>
<td>Total</td>
<td>14.75 µL</td>
<td>814.2 µL</td>
</tr>
</tbody>
</table>
Add Nsp Digestion Master Mix to Samples

To add Nsp Digestion Master Mix to samples:

1. Using a single channel P200 pipette, aliquot 67 µL of Nsp Digestion Master Mix to each tube of the strip tubes labeled \textit{Dig}.

2. Using a 12-channel P20 pipette, add 14.75 µL of Nsp Digestion Master Mix to each DNA sample in the cooling chamber on ice. The total volume in each well is now 19.75 µL.

3. Seal the plate tightly with adhesive film.

4. Vortex the center of the plate at high speed for 3 sec.

5. Spin down the plate at 2000 rpm for 30 sec.

6. Ensure that the lid of thermal cycler is preheated.

7. Load the plate onto the thermal cycler and run the GW5.0 Digest program.

8. When the program is finished, remove the plate and spin it down at 2000 rpm for 30 sec.

What To Do Next

Do one of the following:

- If following the recommended workflow (Figure 4.1 on page 23), proceed immediately to \textit{Stage 5: Nsp Ligation} on page 64.
- If not proceeding directly to the next step, store the samples at –20 °C.
Stage 5: Nsp Ligation

About this Stage
During this stage, the digested samples are ligated using the Nsp Adaptor. You will:

1. Prepare a Nsp Ligation Master Mix.
2. Add the master mix to the samples.
3. Place the samples onto a thermal cycler and the GW5.0 Ligate program is run.
4. Dilute the ligated samples with AccuGENE water.

Location and Duration
- Pre-PCR Clean Area
- Hands-on time: 30 minutes
- GW5.0 Ligate thermal cycler program time: 3.3 hours

Input Required From Previous Stage
The input required from Stage 4: Nsp Restriction Enzyme Digestion is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 samples</td>
<td>Nsp digested samples in a cooling chamber on ice.</td>
</tr>
</tbody>
</table>
Equipment and Consumables Required

The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

Table 4.24 Equipment and Consumables Required for Stage 5: Nsp Ligation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooler, chilled to –20 °C</td>
</tr>
<tr>
<td>1</td>
<td>Cooling chamber, double, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Marker, fine point, permanent</td>
</tr>
<tr>
<td>1</td>
<td>Microcentrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P100</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P1000</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P200</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>2</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Solution basin, 55 mL</td>
</tr>
<tr>
<td>1</td>
<td>Thermal cycler**</td>
</tr>
<tr>
<td>1 strip</td>
<td>Tubes, 12-strip, 0.2 mL</td>
</tr>
<tr>
<td>1</td>
<td>Tube, Eppendorf 2.0 mL</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>

** IMPORTANT:** ** Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 samples.

Table 4.25 Reagents Required for Stage 5: Nsp Ligation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vial</td>
<td>T4 DNA Ligase (400 U/µL; NEB)</td>
</tr>
<tr>
<td>1 vial</td>
<td>T4 DNA Ligase Buffer (10X)</td>
</tr>
<tr>
<td>1 vial</td>
<td>Adaptor, Nsp (50 µM)</td>
</tr>
<tr>
<td>10 mL</td>
<td>AccuGENE water, molecular biology-grade</td>
</tr>
</tbody>
</table>

Important Information About This Procedure

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

Prepare the Reagents, Consumables and Other Components

1 IMPORTANT:
 • Aliquot the T4 DNA Ligase Buffer (10X) after thawing for the first time to avoid multiple freeze-thaw cycles. See vendor instructions.
 • Be sure to use the Nsp adaptor.

Thaw the Reagents and Nsp Digestion Stage Plate

To thaw the reagents and Nsp Digestion Stage Plate:

1. Allow the following reagents to thaw on ice:
 • Adaptor Nsp I
 • T4 DNA Ligase Buffer (10X)
 Takes approximately 20 minutes to thaw.

2. If the Nsp digested samples were frozen, allow them to thaw in a cooling chamber on ice.

1 IMPORTANT: Leave the T4 DNA Ligase at –20 °C until ready to use.
Prepare Your Work Area

To prepare the work area:

1. Place a double cooling chamber and a cooler on ice.
2. Label the following tubes, then place in the cooling chamber:
 - One strip of 12 tubes labeled Lig
 - A 2.0 mL Eppendorf tube labeled Lig MM
 - Solution basin
3. Prepare the digested samples as follows:
 - A. Vortex the center of the plate at high speed for 3 sec.
 - B. Spin down the plate at 2000 rpm for 30 sec.
 - C. Place back in the cooling chamber on ice.
4. To prepare the reagents:
 - A. Vortex at high speed 3 times, 1 sec each time (except for the enzyme).
 - B. Pulse spin for 3 sec.
 - C. Place in the cooling chamber.

IMPORTANT: T4 DNA Ligase Buffer (10X) contains ATP and should be thawed on ice. Vortex the buffer as long as necessary before use to ensure precipitate is re-suspended and that the buffer is clear. Avoid multiple freeze-thaw cycles per vendor instructions.

Preheat the Thermal Cycler Lid

Power on the thermal cycler to preheat the lid. Leave the block at room temperature. The lid must be preheated before samples are loaded.
Prepare the Nsp Ligation Master Mix

Keeping all reagents and tubes on ice, prepare the Nsp Ligation Master Mix as follows:

1. To the 2.0 mL Eppendorf tube, add the following reagents based on the volumes shown in Table 4.26:
 - Adaptor Nsp
 - T4 DNA Ligase Buffer (10X)
2. Remove the T4 DNA Ligase from the freezer and immediately place in the cooler on ice.
3. Pulse spin the T4 DNA Ligase for 3 sec.
4. Immediately add the T4 DNA Ligase to the master mix; then place back in the cooler.
5. Vortex the master mix at high speed 3 times, 1 sec each time.
6. Pulse spin for 3 sec.
7. Place the master mix on ice.
8. Proceed immediately to Add Nsp Ligation Master Mix to Reactions.

Table 4.26 Nsp I Ligation Master Mix

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 Sample</th>
<th>48 Samples (25% extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4 DNA Ligase Buffer (10X)</td>
<td>2.5 µL</td>
<td>150 µL</td>
</tr>
<tr>
<td>Adaptor Nsp I (50 µM)</td>
<td>0.75 µL</td>
<td>45 µL</td>
</tr>
<tr>
<td>T4 DNA Ligase (400 U/µL)</td>
<td>2 µL</td>
<td>120 µL</td>
</tr>
<tr>
<td>Total</td>
<td>5.25 µL</td>
<td>315 µL</td>
</tr>
</tbody>
</table>

Add Nsp Ligation Master Mix to Reactions

To add Nsp Ligation Master Mix to samples:

1. Using a single channel P100 pipette, aliquot 25 µL of Nsp Ligation Master Mix to each tube of the strip tubes on ice.
2. Using a 12-channel P20 pipette, aliquot 5.25 µL of Nsp Ligation Master Mix to each reaction on the Nsp Digestion Stage Plate.
 The total volume in each well is now 25 µL.
3. Seal the plate tightly with adhesive film.
4. Vortex the center of the plate at high speed for 3 sec.
5. Spin down the plate at 2000 rpm for 30 sec.
6. Ensure that the thermal cycler lid is preheated.
7. Load the plate onto the thermal cycler and run the GW5.0 Ligate program.

Table 4.27 GW5.0 Ligate Thermal Cycler Program

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>16°C</td>
<td>180 minutes</td>
</tr>
<tr>
<td>70°C</td>
<td>20 minutes</td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
</tr>
</tbody>
</table>
Dilute the Samples

IMPORTANT: It is crucial to dilute the ligated DNA with AccuGENE water prior to PCR.

To dilute the samples:

1. When the GW5.0 Ligate program is finished, remove the plate and spin it down at 2000 rpm for 30 sec.
2. Place the plate in a cooling chamber on ice.
3. Dilute each reaction as follows:
 A. Pour 10 mL AccuGENE water into the solution basin.
 B. Using a 12-channel P200 pipette, add 75 µL of the water to each reaction. The total volume in each well is 100 µL.

<table>
<thead>
<tr>
<th>Nsp Ligated DNA</th>
<th>25 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuGENE water</td>
<td>75 µL</td>
</tr>
<tr>
<td>Total</td>
<td>100 µL</td>
</tr>
</tbody>
</table>

4. Seal the plate tightly with adhesive film.
5. Vortex the center of the plate at high speed for 3 sec.

What To Do Next

Do one of the following:

- If following the recommended workflow (Figure 4.1 on page 23), proceed immediately to *Stage 6: Nsp PCR* on page 71.
 Store the plate in a cooling chamber on ice for up to 60 minutes.
- If not proceeding directly to the next step, store the plate at –20 °C.
Stage 6: Nsp PCR

About this Stage
During this stage, you will:
1. Transfer equal amounts of each Nsp ligated sample into four fresh 96-well plates.
2. Prepare the Nsp PCR Master Mix, and add it to each sample.
3. Place each plate on a thermal cycler and run the GW 5.0 PCR program.
4. Confirm the PCR by running 3 µL of each PCR product on a 2% TBE gel or an E-Gel® 48 2% agarose gel.

Location and Duration
- Pre-PCR Clean Area: Nsp PCR Master Mix preparation
- PCR Staging Area: PCR set up
- Main Lab: PCR Plates placed on thermal cyclers
- Hands-on time: 1 hour
- GW5.0 PCR thermal cycler program time: 1.5 hours; samples can be held overnight at 4 °C.

Input Required from Previous Stage
The input required from Stage 5: Nsp Ligation is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Diluted Nsp ligated samples</td>
</tr>
</tbody>
</table>
Equipment and Materials Required

The following equipment and materials are required to perform this stage. Refer to Appendix A for vendor and part number information.

Table 4.28 Equipment and Consumables Required for Stage 6: Nsp PCR

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooler, chilled to –20 °C</td>
</tr>
<tr>
<td></td>
<td>Enough for five 96-well plates</td>
</tr>
<tr>
<td>1</td>
<td>Cooling chambers, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Marker, fine point, permanent</td>
</tr>
<tr>
<td>1</td>
<td>Microcentrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P100</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P200</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P1000</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P200</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>4</td>
<td>Plates, 96-well reaction**</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>As needed</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Solution basin, 55 mL</td>
</tr>
<tr>
<td>4</td>
<td>Thermal cycler**</td>
</tr>
<tr>
<td>1</td>
<td>Tube, Falcon 50 mL</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>

** IMPORTANT: ** Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 samples.

Table 4.29 Reagents Required for *Stage 6: Nsp PCR*

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mL</td>
<td>AccuGENE water, molecular biology-grade</td>
</tr>
<tr>
<td>1 vial</td>
<td>PCR Primer 002 (100 µM)</td>
</tr>
</tbody>
</table>

The following reagents from the Clontech TITANIUM™ DNA Amplification Kit:

- dNTPs (2.5 mM each)
- GC-Melt (5M)
- TITANIUM™ *Taq* DNA Polymerase (50X)
- TITANIUM™ *Taq* PCR Buffer (10X)

Gels and Related Materials Required

Verifying the PCR reaction is required for this stage. You can use the following gels and related materials, or E-Gels as described in Appendix C, *E-gels, on page 211*. The amounts listed are sufficient to process 48 Sty samples.

Refer to Appendix A for vendor and part number information.

Table 4.30 Gels and Related Materials Required for *Stage 6: Nsp PCR*

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 µL</td>
<td>DNA Marker</td>
</tr>
<tr>
<td>19</td>
<td>Gels, 2% TBE</td>
</tr>
<tr>
<td>As needed</td>
<td>Gel loading solution</td>
</tr>
<tr>
<td>4</td>
<td>Plates, 96-well reaction</td>
</tr>
</tbody>
</table>
Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

IMPORTANT:
- Make sure the Nsp ligated DNA was diluted to 100 µL with AccuGENE water.
- Set up the PCRs in PCR Staging Area.
- Prepare Nsp PCR Master Mix immediately prior to use, and prepare in Pre-PCR Clean room. To help ensure the correct distribution of fragments, be sure to add the correct amount of primer to the master mix. Mix the master mix well to ensure the even distribution of primers.
- To ensure consistent results, take 3 µL aliquots from each PCR to run on gels.

About Controls
A PCR negative control can be included in the experiment to assess the presence of contamination. Refer to Chapter 3 and Chapter 7 for more information.

Prepare the Reagents, Consumables and Other Components

Thaw Reagents and Nsp Ligated Samples

To thaw the reagents and Nsp ligated samples:

1. Allow the following reagents to thaw on ice.
 - TITANIUM *Taq* PCR Buffer
 - dNTPs
 - PCR Primer 002

 ! IMPORTANT: Leave the TITANIUM *Taq* DNA Polymerase at –20 °C until ready to use.

2. If the Nsp ligated samples are frozen, allow to thaw in a cooling chamber on ice.
Prepare Your Work Area (Pre-PCR Clean Area)

To prepare the work area:

1. Place enough cooling chambers for 5 plates and one cooler on ice.
2. Label the following, then place in a cooling chamber:
 a. Four 96-well reaction plates labeled P1, P2, P3, P4
 b. One 50 mL Falcon tube labeled PCR MM
3. Place on ice:
 a. AccuGENE water
 b. GC-Melt
 c. Solution basin
4. Prepare the Nsp ligated samples as follows:
 a. Vortex the center of the plate at high speed for 3 sec.
 b. Spin down the plate at 2000 rpm for 30 sec.
 c. Label the plate Lig.
 d. Place back in the cooling chamber on ice.
5. To prepare the reagents:
 a. Vortex at high speed 3 times, 1 sec each time (except for the enzyme).
 b. Pulse spin for 3 sec.
 c. Place in a cooling chamber.

Preheat the Thermal Cycler Lids (Main Lab)

Have someone in the Main Lab power on the thermal cyclers to be used for PCR to preheat the lids. The lids must be preheated before loading samples; leave the blocks at room temperature.

If you are preparing the plates for PCR, it is best not to go from the Pre-PCR Room or Staging Area to the Main Lab and then back again.

Aliquot Nsp Ligated DNA to the PCR Plates

To aliquot Nsp ligated DNA to the PCR plates:

1. Working one row at a time and using a 12-channel P20 pipette, transfer 10 µL of each Nsp ligated sample to the corresponding well of each PCR plate (P1, P2, P3 and P4).
2. Seal each plate with adhesive film, and leave in cooling chambers on ice.
Prepare the Nsp PCR Master Mix

Location
Pre-PCR Clean Room

Prepare the Nsp PCR Master Mix

To prepare the Nsp PCR Master Mix:

1. Keeping the 50 mL Falcon tube in the cooling chamber, add the reagents as shown in Table 4.31 on page 77 (except for the Taq DNA polymerase).
2. Remove the TITANIUM Taq DNA Polymerase from the freezer and immediately place in a cooler.
3. Pulse spin the Taq DNA polymerase for 3 sec.
4. Immediately add the Taq DNA polymerase to the master mix; then return the tube to the cooler on ice.
5. Vortex the master mix at high speed 3 times, 1 sec each time.
6. Pour the mix into the solution basin, keeping the basin on ice.
Add Nsp PCR Master Mix to Samples

Location
PCR Staging Area

Procedure
To add Nsp PCR Master Mix to samples:

1. Using a 12-channel P200 pipette, add 90 µL Nsp PCR Master Mix to each sample.
 To avoid contamination, change pipette tips after each dispense.
 The total volume in each well is 100 µL.

2. Seal each reaction plate tightly with adhesive film.

3. Vortex the center of each reaction plate at high speed for 3 sec.

4. Spin down the plates at 2000 rpm for 30 sec.

5. Keep the reaction plates in cooling chambers on ice until loaded onto the thermal cyclers.

Table 4.31 Nsp PCR Master Mix for 48 Samples

<table>
<thead>
<tr>
<th>Reagent</th>
<th>For 1 Reaction</th>
<th>4 PCR Plates (15% extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuGENE water</td>
<td>39.5 µL</td>
<td>8.722 mL</td>
</tr>
<tr>
<td>TITANIUM Taq PCR Buffer (10X)</td>
<td>10 µL</td>
<td>2.208 mL</td>
</tr>
<tr>
<td>GC-Melt (5M)</td>
<td>20 µL</td>
<td>4.416 mL</td>
</tr>
<tr>
<td>dNTP (2.5 mM each)</td>
<td>14 µL</td>
<td>3.091 mL</td>
</tr>
<tr>
<td>PCR Primer 002 (100 µM)</td>
<td>4.5 µL</td>
<td>0.994 mL</td>
</tr>
<tr>
<td>TITANIUM Taq DNA Polymerase (50X)</td>
<td>2 µL</td>
<td>0.442 mL</td>
</tr>
<tr>
<td>do not add until ready to aliquot master mix to ligated samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>90 µL</td>
<td>19.873 mL</td>
</tr>
</tbody>
</table>
Load Nsp PCR Plates Onto Thermal Cyclers

Location
Main Lab

Procedure
To load the plates and run the GW5.0 PCR program:
1. Transfer the plates to the Main Lab.
2. Ensure that the thermal cycler lids are preheated.
 The block should be at room temperature.
3. Load each reaction plate onto a thermal cycler.
4. Run the GW5.0 PCR program.
 The program varies depending upon the thermal cyclers you are using. See Table 4.32 and Table 4.33 on page 79 program parameters.

IMPORTANT: PCR protocols for the MJ Tetrad PTC-225 and Applied Biosystems thermal cyclers are different. Thermal cycler program parameters are on page 79.

IMPORTANT: If using GeneAmp® PCR System 9700 thermal cyclers, be sure the blocks are silver or gold-plated silver. Do NOT use thermal cyclers with aluminum blocks. It is not easy to visually distinguish between silver and aluminum blocks.
Table 4.32 GW5.0 PCR Thermal Cycler Program for the GeneAmp® PCR System 9700 (silver or gold-plated silver blocks)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>3 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>94°C</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>45 sec</td>
<td>30X</td>
</tr>
<tr>
<td>68°C</td>
<td>15 sec</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>7 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>4°C</td>
<td>HOLD (Can be held overnight)</td>
<td></td>
</tr>
</tbody>
</table>

Volume: 100 µL

Specify *Maximum* mode.

Table 4.33 GW5.0 PCR Thermal Cycler Program for the MJ Tetrad PTC-225

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>3 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>94°C</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>30 sec</td>
<td>30X</td>
</tr>
<tr>
<td>68°C</td>
<td>15 sec</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>7 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>4°C</td>
<td>HOLD (Can be held overnight)</td>
<td></td>
</tr>
</tbody>
</table>

Volume: 100 µL

Use *Heated Lid and Calculated Temperature*
Running Gels

The instructions below are for running 2% TBE gels. For information on running E-Gel 48 2% agarose gels, refer to Appendix C, E-gels, on page 211.

Before Running Gels
To ensure consistent results, take 3 µL aliquot from each PCR.

⚠️ WARNING: Wear the appropriate personal protective equipment when handling ethidium bromide.

Run the Gels

When the GW5.0 PCR program is finished:

1. Remove each plate from the thermal cycler.
2. Spin down plates at 2000 rpm for 30 sec.
3. Place plates in cooling chambers on ice or keep at 4 °C.
4. Label four fresh 96-well reaction plates P1Gel, P2Gel, P3Gel, and P4Gel.
5. Aliquot 3 µL of 2X Gel Loading Dye to each well in rows A through D of the fresh, labeled PXGel plates.
6. Using a 12-channel P20 pipette, transfer 3 µL of each PCR product from the 4 Nsp PCR plates to the corresponding plate, row and wells of the PXGel plates.
 Example: 3 µL of each PCR product from each well of row A on plate P1 is transferred to the corresponding wells of row A on plate P1Gel.
7. Seal the PXGel plates.
8. Vortex the center of each PXGel plate, then spin them down at 2000 rpm for 30 sec.
9. Load the total volume from each well of each PXGel plate onto 2% TBE gels.
10. Run the gels at 120V for 40 minutes to 1 hour.
11. Verify that the PCR product distribution is between ~250 bp to 1100 bp (see Figure 4.6 on page 81).
What To Do Next

Do one of the following:

- If following the recommended workflow (Figure 4.1 on page 23), do one of the following:
 - If the Nsp PCR plates are still on the thermal cyclers, remove them now and run gels to confirm the PCR (Running Gels on page 80). Then proceed to Stage 7: PCR Product Pooling and Purification on page 82.
 - If the PCR has been confirmed, proceed to Stage 7: PCR Product Pooling and Purification on page 82.
- If not proceeding directly to the next stage, seal the plates with PCR product and store at –20 °C.
Stage 7: PCR Product Pooling and Purification

About this Stage
During this stage, you will:
• Pool the Sty and Nsp PCR reactions to a single deep well pooling plate, for a total of 700 µL/well
• Add beads to each pool and incubate
• Transfer each pool to a filter plate and dry down on a vacuum manifold
• Wash the PCR products with EtOH and dry down
• Elute the PCR products using Buffer EB
• Vacuum and spin transfer the PCR products to a new 96-well plate

Location and Duration
• Main Lab
• Hands-on time: 1 hour
• Initial dry down: 60 to 90 minutes
• EtOH wash: approximately 10 to 20 minutes
• Elution: 15 to 30 minutes
• Total time for this stage: approximately 3.5 hours

Input Required from Previous Stage
The input required from Stage 3: Sty PCR is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 plates</td>
<td>Sty PCR product</td>
</tr>
<tr>
<td>4 plates</td>
<td>Nsp PCR product</td>
</tr>
</tbody>
</table>
Equipment and Consumables Required

Refer to Appendix A for vendor and part number information.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Collar, Multiscreen, deep well</td>
</tr>
<tr>
<td>1</td>
<td>Flashlight</td>
</tr>
<tr>
<td>1</td>
<td>Jitterbug</td>
</tr>
<tr>
<td>As needed</td>
<td>Kimwipes</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P200</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P1200</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, serological</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>1</td>
<td>Plate, 96-well PCR</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge with deep-well capacity (54mm H x 160g)</td>
</tr>
<tr>
<td>1</td>
<td>Plate, storage, 2.4 mL deep well (referred to as the pooling plate)</td>
</tr>
<tr>
<td>1</td>
<td>Plate, elution catch, 96-well V-bottom</td>
</tr>
<tr>
<td>1</td>
<td>Plate, 2ml, 96-well format filter plate (PES 0.45 µm) (requires a deep well collar on the vacuum manifold; listed above)</td>
</tr>
<tr>
<td>7</td>
<td>Plate holders</td>
</tr>
<tr>
<td>3</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Solution basin, 55 mL or larger</td>
</tr>
<tr>
<td>1 roll</td>
<td>Tape, lab</td>
</tr>
<tr>
<td>1</td>
<td>Vacuum Manifold, Millipore</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>

Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 reactions.

Table 4.35 Reagents Required for Stage 7: PCR Product Pooling and Purification

<table>
<thead>
<tr>
<th>Quantity Required for 48 Samples</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mL</td>
<td>Elution Buffer (Buffer EB)</td>
</tr>
<tr>
<td>100 mL</td>
<td>75% EtOH (ACS-grade ethanol diluted to 75% using AccuGENE water)</td>
</tr>
<tr>
<td>50 mL</td>
<td>Magnetic Beads</td>
</tr>
</tbody>
</table>

Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

IMPORTANT:
- Bring the Buffer EB and 75% EtOH to room temperature prior to use.
- The storage temperature for the magnetic beads is 4°C (refrigerator).
- To avoid cross-contamination, pipette very carefully when pooling the PCR reactions into the deep-well plate.
- Maintain the vacuum between 20—24 in Hg (do not exceed 24 in Hg).
- Inspect the vacuum manifold for salt buildup after each use, and clean regularly. Refer to Chapter 8 for cleaning instructions.
- After the EtOH wash, the wells must be completely dry before eluting the samples with Buffer EB. Any extra EtOH carried with the EB Buffer to the next stage can result in poor fragmentation.
- Immediately after the EtOH wash, remove the plate stack from the manifold and blot the bottom of the plate to remove any excess EtOH.
Prepare the 75% EtOH

Dilute ACS-grade ethanol to 75% using AccuGENE water.

Prepare the Reagents

Allow the Buffer EB and 75% EtOH to warm room temperature prior to use.

Prepare the Vacuum Manifold

To prepare the manifold:

1. Connect the manifold and regulator to a suitable vacuum source able to maintain 20 to 24 in Hg. Leave the vacuum turned off at this time.
2. Lower the vacuum flask trap below the level of the manifold.
3. Inspect the manifold for salt and other contaminants and clean if necessary.

IMPORTANT: Inspect the vacuum manifold for salt buildup before each use. Clean the manifold regularly. Refer to Chapter 8 for cleaning instructions. If the flask trap is not placed below the level of the manifold, some solution may splash back and adhere to the bottom of the filter plate.

Pool the PCR Products

CAUTION: Be very careful when pooling PCR products. Avoid cross-contaminating neighboring wells with small droplets.

To pool the PCR Plates:

1. Thaw frozen PCR products to room temperature on the bench top in plate holders.
2. If any plates are on thermal cyclers, remove them now.
3. Vortex the center of each plate at high speed for 3 sec.
4. Spin down each plate at 2000 rpm for 30 sec.
5. Place each PCR plate in a plate holder on the bench top.
6. Place a deep well pooling plate on the bench top.
7. On each PCR plate, cut the seal between each row so that it can be removed one row at a time.
8. Using a 12-channel P200 pipette set to 110 µL:
A. Remove the seal to expose row A only on each PCR plate.

B. Transfer the reactions from row A of each PCR plate to the corresponding wells of row A on the pooling plate (Table 4.36 below and Figure 4.7 on page 87).

C. Change your pipette tips.
 Change pipette tips after the PCR product from the same row of each PCR plate has been pooled on the pooling plate.

D. Remove the seal from each PCR plate to expose the next row.

E. Transfer each reaction from the same row of each PCR plate to the corresponding row and wells of the pooling plate.

F. Repeat steps C., D. and E. until all of the reactions from each PCR plate are pooled on the pooling plate.

8. When finished, look at the wells of each PCR plate to ensure that all of the product has been transferred and pooled.

Table 4.36 Pooled Sty and Nsp PCR Products

<table>
<thead>
<tr>
<th>Sty PCR plates (3):</th>
<th>100 µL from each well = 300 µL/well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nsp PCR Plate (4):</td>
<td>100 µL from each well = 400 µL/well</td>
</tr>
<tr>
<td>Total Volume Each Well of Pooling Plate</td>
<td>= 700 µL/well</td>
</tr>
</tbody>
</table>
Figure 4.7 Pooling Sty and Nsp PCR Products on a Deep Well Pooling Plate

= Pooled PCR product from rows A of plates Sty P1, Sty P2, Sty P3, Nsp P1, Nsp P2, Nsp P3, and Nsp P4 to corresponding wells of row A on the pooling plate.
Purify the Pooled PCR products

Add Magnetic Beads and Incubate

During incubation, the DNA binds to the magnetic beads.

To add magnetic beads and incubate:

1. Mix the magnetic bead stock very well by vigorously shaking the bottle.
 Beads will settle overnight. Examine the bottom of the bottle and ensure that the solution appears homogenous.

2. Pour or pipette 50 mL of magnetic beads to a solution basin.
 1 mL of magnetic beads is required for each reaction. You can add in multiple batches if the solution basin is not large enough.

3. Using a 12-channel P1200 pipette:
 A. Add 1.0 mL of magnetic beads to each well of pooled PCR product.
 B. Mix well by pipetting up and down 5 times using the following technique:
 Mixing Technique:
 1) Depress the plunger and place the pipette tips into the top of the solution.
 2) Move the pipette tips down – aspirating at the same time – until the tips are near the bottom of each well.
 3) Raise the tips out of the solution.
 4) Place the pipette tips against the wall of each well just above each reaction, and carefully dispense the solution.

 IMPORTANT: The solution is viscous and sticky. Pipette carefully to ensure that you aspirate and dispense 1 mL.
 Thorough mixing is critical to ensure that the PCR products bind to the beads.

 5) Change pipette tips for each row.

4. Cover the plate to protect the samples from environmental contaminants and allow to incubate at room temperature for 10 minutes.
 You can use the lid from a pipette tip box to cover the wells.

Transfer Reactions to a Filter Plate

To transfer the reactions to a filter plate:

1. Place the filter plate on the Millipore vacuum manifold.

2. Using a 12-channel P1200 pipette, transfer each reaction from the pooling plate to the corresponding row and well of the filter plate.
3. Tightly seal the unused wells with a MicroAmp Clear Adhesive Film. To ensure a tight seal, cover 1/2 to 1/3 of the wells in row D as well. Unused wells **must be sealed** to ensure proper vacuum pressure.

![Plate seal covering empty wells (rows E through H) and 1/2 to 1/3 of the wells in row D.](image)

Figure 4.8 Sealing Empty Wells on the Filter Plate

Purify the Reactions

To purify the reactions:

1. Turn on the vacuum to 20 to 24 in Hg and check the seals.
 Do not exceed 24 in Hg. Adjust the leak valve if necessary.
2. Ensure that the unused wells are completely sealed.
3. Cover the plate to protect it from environmental contaminants.
4. Allow the liquid to filter 60 to 90 minutes.
5. When all of the wells appear dry:
 A. Turn off the vacuum and inspect each well using a flashlight.
 The surface changes from shiny (reflective) to matte (non-reflective) when dry. There should be no standing liquid in any of the wells being used.
 B. If all of the wells are not dry, place the plate back on the manifold and resume filtering.

IMPORTANT: Continue filtering and inspecting the wells with a flashlight until completely dry. There should be no standing liquid in any of the wells being used.
6. Using a 12-channel P1200 set to 900 µL, add 1.8 mL of 75% EtOH to each reaction.
7. Turn the vacuum back on to 20 to 24 in Hg and cover the plate.
8. Allow the wells to filter to dryness for 10 to 20 minutes.
9. When all of the wells appear dry:
 A. Turn off the vacuum and inspect each well using a flashlight.
 The surface changes from shiny (reflective) to matte (non-reflective) when dry.
 There should be no standing liquid in any of the wells being used.
 B. If all of the wells are not dry, place the plate back on the manifold and resume filtering.

IMPORTANT: Continue filtering and inspecting the wells with a flashlight until completely dry. There should be no standing liquid in any of the wells being used.

10. When all wells are completely dry, remove the filter plate from the manifold and tap it several times on towels (Kimwipes) to blot off any excess EtOH from the bottom of the plate.
11. Return the filter plate to the manifold, turn on the vacuum to 20 to 24 in Hg, and allow the beads to dry an additional 10 minutes.
12. Turn off the vacuum, remove the filter plate, and blot the bottom of the plate again on Kimwipes to remove any excess EtOH.
Elute the Purified Reactions

To elute the purified reactions:

1. Attach the elution catch plate to the bottom of the filter plate using 2 strips of lab tape.
 The filter and elution plate assembly is now referred to as the plate stack (Figure 4.9).

 IMPORTANT: Do not completely seal with tape. Product will not elute if sealed.

 ![Attaching the Elution Catch Plate to the Filter Plate](image)

2. Pour or pipette 3 mL of Buffer EB to a solution basin.
3. Using a 12-channel P200 pipette, add 55 µL of Buffer EB to each well.
 For accurate pipetting, pre-wet pipette tips with EB before dispensing. Dispense as close to the beads as possible without touching them. Buffer EB should be applied directly on top of the beads (see Figure 4.10 and Figure 4.11 on page 92).
4. Tap the plate stack to move all Buffer EB onto the filter at the bottom of the wells.
5. Using an adhesive film, tightly seal the filter plate on the plate stack.
6. Place the plate stack on a Jitterbug for 10 minutes at setting 5.
7. Inspect each well to verify that the beads are thoroughly resuspended. The dry down after adding EtOH makes the beads very dry. The beads must be thoroughly resuspended in Buffer EB so that the DNA can come off the beads.

8. Remove the plate stack from the Jitterbug and remove the adhesive seal.

9. Continue elution on the vacuum manifold as follows:
 A. Remove the manifold cover and insert the plate stack.
 B. Seal the empty wells with adhesive film.
 C. Place the \textit{deep well} collar over the plate stack (Figure 4.12 on page 93).
 D. Turn the vacuum on to 20 to 24 in Hg and ensure that a seal has been formed between the collar and the base of the manifold.
 E. Ensure that the unused wells are completely sealed.
F. Cover the plate stack with the lid from a pipette tip box to protect it from environmental contaminants.

G. Leave the plate stack on the manifold 15 to 30 minutes.

H. When all of the wells appear dry:
 1) Turn off the vacuum and inspect each well using a flashlight. The surface changes from sheeny (reflective) to matte (non-reflective) when dry. There should be no standing liquid in any of the wells being used.
 2) If all of the wells are not dry, place the plate back on the manifold and resume filtering.

 IMPORTANT: Continue filtering and inspecting the wells with a flashlight until completely dry. There should be no standing liquid in any of the wells being used.

 3) When all wells are completely dry, remove the plate stack from the manifold.

10. Seal the plate stack with an adhesive film, and spin it down at room temperature for 5 minutes at 1400 rcf.
11. Remove the elution catch plate from the filter plate.

12. Using a 12-channel P200 pipette, transfer 45 µL of eluate to a new PCR plate for fragmentation.

NOTE: If a particular well(s) contain less than 45 µL of purified PCR product, see page 177 of *Chapter 7, Troubleshooting* for instructions.

What To Do Next

Take an OD measurement using the remaining eluate as described below. Do one of the following:

- If following the recommended workflow (Figure 4.1 on page 23) seal the plate containing the eluate and store it overnight at –20 °C.
- Proceed directly to *Stage 9: Fragmentation* on page 103.
Stage 8: Quantitation

About this Stage
During this stage, you will prepare one dilution of each PCR product in optical plates. You will then quantitate the diluted PCR products.

Location and Duration
- Main Lab
- Hands-on time: 20 minutes

Input Required from Previous Stage
Input required from *Stage 7: PCR Product Pooling and Purification* is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plate of purified PCR product</td>
</tr>
</tbody>
</table>

Equipment and Consumables Required
The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

IMPORTANT: **Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.**
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 reactions.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mL</td>
<td>AccuGENE water, molecular biology-grade</td>
</tr>
</tbody>
</table>
Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

1. **IMPORTANT:**
 - The accuracy of the OD measurement is critical. Carefully follow this procedure and be sure the OD measurement is within the quantitative linear range of the instrument (0.2 to 2.0 OD).
 - The spectrophotometer plate reader should be calibrated regularly to ensure correct readings.
 - This protocol has been optimized using a UV spectrophotometer plate reader for quantitation.
 - The NanoDrop® will give different quantitation results. This protocol has not been optimized for use with this instrument. In addition, the NanoDrop quantifies a single sample at a time and is not amenable to 96-well plate processing.

Prepare the Reagents, Equipment and Consumables

Turn on the Spectrophotometer Plate Reader

Turn on the spectrophotometer now and allow it to warm for 10 minutes before use.

Prepare Your Work Area

To prepare the work area:

1. Place the following on the bench top:
 - Optical plate
 - Solution basin
 - AccuGENE water
2. Label the optical plate *OP*.
3. Prepare the purified, eluted PCR product plate as follows:
 - **A.** If the plate was frozen, allow it to thaw in a cooling chamber on ice.
 - **B.** Spin down the plate at 2000 rpm for 30 sec.
 - **C.** Place the plate on the bench top.
Prepare Diluted Aliquots of Purified Sample

IMPORTANT: One row of wells on the optical plate are used as blanks and contain AccuGENE water only.
The 12-channel P20 pipette must be accurate to within ±5%.

To prepare diluted aliquots of the purified samples:

1. Pour 15 mL of room temperature AccuGENE water into the solution basin.
2. Using a 12-channel P200 pipette aliquot 198 µL of water to each well in rows A through E of the optical plate.
3. Using a 12-channel P20 pipette:
 - A. Transfer 2 µL of each purified PCR product from rows A through D of the purified sample plate to the corresponding rows and wells of the optical plate (see Figure 4.13 on page 99).
 Row E remains water only and will serve as a blank.
 - B. Pipette up and down 2 times after each transfer to ensure that all of the product is dispensed.
 - C. Examine the pipette tips and aliquots before and after each dispense to ensure that exactly 2 µL has been transferred.
 The result is a 100-fold dilution.
4. Set a 12-channel P200 pipette to 180 µL.
5. Mix each sample by pipetting up and down 3 times.
 Be careful not to scratch the bottom of the plate, or to introduce air bubbles.

NOTE: If a particular well(s) contain less than 2 µL of purified PCR product, see page 177 of Chapter 7, *Troubleshooting* for instructions.
Quantitate the Diluted PCR Product

To quantitate the diluted PCR product:

1. Measure the OD of each PCR product at 260, 280 and 320 nm. OD280 and OD320 are used as process controls. Their use is described under Process Control Metrics on page 100.

2. Determine the OD260 measurement for the water blank and average.

3. Determine the concentration of each PCR product as follows:
 A. Take 1 OD reading for every sample. OD = (sample OD) – (average water blank OD)
 B. Calculate the undiluted sample concentration for each sample using the Sample OD:
 Sample concentration in µg/µL = OD X 0.05 ug/uL X 100
 Apply the convention that 1 absorbance unit at 260 nm equals 50 µg/mL (equivalent to 0.05 µg/µL) for double-stranded PCR products. This convention assumes a path length of 1 cm. Consult your spectrophotometer handbook for further information.
Assess the OD Readings

Follow the guidelines below for assessing and troubleshooting OD readings.

Sample OD
A typical sample OD is 1.0 to 1.2. This OD range is equivalent to a final PCR product concentration of 5.0 to 6.0 µg/µL. It is based on the use of a conventional UV spectrophotometer plate reader and assumes a path length of 1 cm.

Process Control Metrics
Evaluate the process control metrics as follows:

- The OD260/OD280 ratio should be between 1.8 and 2.0.
 Do not proceed if this metric falls outside of this range.
- The OD320 measurement should be very close to zero (0 ± 0.005).

OD Troubleshooting Guidelines
Refer to the tables below when troubleshooting OD readings.

Table 4.39 PROBLEM: Sample OD is greater than 1.2 (6 µg/µL)

<table>
<thead>
<tr>
<th>Possible causes include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The purified PCR product was eluted in a volume less than 55 µL.</td>
</tr>
<tr>
<td>• The purified PCR product was not mixed adequately before making the 1:100 dilution.</td>
</tr>
<tr>
<td>• The diluted PCR product was not mixed adequately before taking the OD reading.</td>
</tr>
<tr>
<td>• The water blank reading was not subtracted from each sample OD reading.</td>
</tr>
<tr>
<td>• The spectrophotometer plate reader may require calibration.</td>
</tr>
<tr>
<td>• Pipettes may require calibration.</td>
</tr>
<tr>
<td>• There may be air bubbles or dust in the OD plate.</td>
</tr>
<tr>
<td>• There may be defects in the plastic of the plate.</td>
</tr>
<tr>
<td>• The settings on the spectrophotometer plate reader or the software may be incorrect.</td>
</tr>
<tr>
<td>• OD calculations may be incorrect and should be checked.</td>
</tr>
</tbody>
</table>
Table 4.40 PROBLEM: Sample OD is Less Than 1.0 (5 µg/µL)

If the sample OD is less than 1.0 (calculated concentration less than 5 µg/µL), a problem may exist with either the genomic DNA, the PCR reaction, the elution of purified PCR products, or the OD readings.

Possible problems with input genomic DNA that would lead to reduced yield include:

- The presence of inhibitors (heme, EDTA, etc.).
- Severely degraded genomic DNA.
- Inaccurate concentration of genomic DNA.

Check the OD reading for the PCR products derived from RefDNA 103 as a control for these issues.

To prevent problems with the PCR reaction that would lead to reduced yield:

- Use the recommended reagents and vendors (including AccuGENE® water) for all PCR mix components.
- Thoroughly mix all components before making the PCR Master Mix.
- Pipette all reagents carefully, particularly the PCR Primer, when making the master mix.
- Check all volume calculations for making the master mix.
- Store all components and mixes on ice when working at the bench. Do not allow reagents to sit at room temperature for extended periods of time.
- Be sure to use the recommended PCR plates. Plates from other vendors may not fit correctly in the thermal cycler block. Differences in plastic thickness and fit with the thermal cycler may lead to variance in temperatures and ramp times.
- Be sure to use the correct cycling mode when programming the thermal cycler (maximum mode on the GeneAmp® PCR System 9700; calculated mode on the MJ Tetrad PTC-225 or Tetrad 2).
- Be sure to use silver or gold-plated silver blocks on the GeneAmp® PCR System 9700 (other blocks are not capable of maximum mode, which will affect ramp times).
- Use the recommended plate seal. Make sure the seal is tight and that no significant evaporation occurs during the PCR.

NOTE: The Genome-Wide SNP 5.0 Assay reaction amplifies a size range of fragments that represents 30% of the genome. The Genome-Wide Human SNP Array 5.0 is designed to detect the SNPs that are amplified in this complex fragment population. Subtle changes in the PCR conditions may not affect the PCR yield, but may shift the amplified size range up or down very slightly. This can lead to reduced amplification of SNPs that are assayed on the array set, subsequently leading to lower call rates.

Troubleshooting Possible Problems with the Elution or OD Readings – possible causes include:

- The purified PCR product was eluted in a volume greater than 55 µL.
- The purified PCR product was not mixed adequately before making the 1:100 dilution.
- The diluted PCR product was not mixed adequately before taking the OD reading.
What To Do Next

Do one of the following:

- Proceed immediately to the next step.
- If not proceeding immediately to the next step:
 - A. Seal the plate with the eluted samples.
 - B. Store the plate at –20 °C.

Table 4.40 (Continued) PROBLEM: Sample OD is Less Than 1.0 (5 µg/µL)

- The water blank reading was not subtracted from each sample OD reading.
- The spectrophotometer plate reader may require calibration.
- Pipettes may require calibration.
- There may be air bubbles or dust in the OD plate.
- There may be defects in the plastic of the plate.
- The settings on the spectrophotometer plate reader or the software may be incorrect.
- OD calculations may be incorrect and should be checked.

Table 4.41 PROBLEM: OD260/OD280 ratio is not between 1.8 and 2.0

Possible causes include:

- The PCR product may be not be sufficiently purified. Ensure the vacuum manifold is working properly.
- An error may have been made while taking the OD readings.
- The PCR product may not have been adequately washed. Check the 75% EtOH wash solution.

Table 4.42 PROBLEM: The OD320 measurement is significantly larger than zero (0 ± 0.005)

Possible causes include:

- Magnetic beads may have been carried over into purified sample.
- Precipitate may be present in the eluted samples.
- There may be defects in the OD plate.
- Air bubbles in the OD plate or in solutions.
Stage 9: Fragmentation

About this Stage
During this stage the purified PCR products will be fragmented using Fragmentation Reagent. You will first dilute the Fragmentation Reagent by adding the appropriate amount of Fragmentation Buffer and AccuGENE water.

You will then quickly add the diluted reagent to each reaction, place the plate onto a thermal cycler, and run the GW5.0 Fragment program.

Once the program is finished, you will check the results of this stage by running 1.5 µL of each reaction on a 4% TBE gel or an E-Gel 48 4% agarose gel.

Location and Duration
- Main Lab
- Hands-on time: 30 minutes
- GW5.0 Fragment thermal cycler program time: 1 hour

Input Required from Previous Stage
The input required from Stage 8: Quantitation is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plate of quantitated PCR product in a cooling chamber on ice</td>
</tr>
</tbody>
</table>
Equipment and Consumables Required

The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

IMPORTANT: **Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.**

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooler, chilled to –20 °C</td>
</tr>
<tr>
<td>1</td>
<td>Cooling chamber, double, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Marker, fine point, permanent</td>
</tr>
<tr>
<td>1</td>
<td>Microcentrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P20</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P100</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P1000</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, 12-channel P20 (accurate to within ± 5%)</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Thermal cycler**</td>
</tr>
<tr>
<td>2</td>
<td>Tube, Eppendorf 1.5 mL</td>
</tr>
<tr>
<td>2</td>
<td>Tubes, 12-strip, 0.2 mL</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 samples.

Table 4.44 Reagents Required for Stage 9: Fragmentation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vial</td>
<td>Fragmentation Buffer (10X)</td>
</tr>
<tr>
<td>1 vial</td>
<td>Fragmentation Reagent (DNase I)</td>
</tr>
<tr>
<td>1 mL</td>
<td>AccuGENE® water, molecular biology-grade</td>
</tr>
</tbody>
</table>

Gels and Related Materials Required

Verifying the PCR reaction is required for this stage. You can use the following gels and related materials, or E-Gels as described in Appendix C, E-gels, on page 211. The amounts listed are sufficient to process 48 Sty samples. Refer to Appendix A for vendor and part number information.

Table 4.45 Gels and Related Materials Required

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4% TBE Gel</td>
</tr>
<tr>
<td>10</td>
<td>DNA Markers, 5 µL each</td>
</tr>
<tr>
<td>As needed</td>
<td>Gel loading solution</td>
</tr>
</tbody>
</table>
Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

1. IMPORTANT:
 - The degree of fragmentation is critical. Perform this stage carefully to ensure uniform, reproducible fragmentation.
 - Use only the AccuGENE water listed in Appendix A. Using in-house ddH2O or other water can negatively affect your results. The reaction in Stage 9: Fragmentation is particularly sensitive to pH and metal ion contamination.
 - All additions, dilutions and mixing must be performed on ice. Be sure to allow all reagents to reach equilibrium before adding new fluid.

About the Fragmentation Reagent

- This reagent is extremely temperature sensitive and rapidly loses activity at higher temperatures. To avoid loss of activity:
 - Handle the tube by the cap only. Do not touch the sides of the tube as the heat from your fingers will raise the reagent temperature.
 - Dilute immediately prior to use.
 - Keep at –20 °C until ready to use. Transport and hold in a –20 °C cooler. Return to the cooler immediately after use.
 - Spin down so that the contents of the tube are uniform.
 - Perform these steps rapidly and without interruption.
- This reagent is sticky, and may adhere to the walls of some microfuge tubes and 96-well plates.
- This reagent is viscous and requires extra care when pipetting. Follow these guidelines:
 - Pipette slowly to allow enough time for the correct volume of solution to enter the pipette tip.
 - Avoid excess solution on the outside of the pipette tip.
Prepare the Reagents, Consumables and Other Components

Thaw Reagents
Thaw the Fragmentation Buffer (10X) on ice.

IMPORTANT: Leave the Fragmentation Reagent at –20 °C until ready to use.

Prepare Your Work Area
To prepare the work area:
1. Place a double cooling chamber and a cooler on ice.
2. Place the AccuGENE water on ice.
3. Prepare the Fragmentation Buffer as follows:
 A. Vortex 3 times, 1 sec each time.
 B. Pulse spin for 3 sec.
 C. Place the buffer in the cooling chamber on ice.
4. Label and place the following in the cooling chamber on ice:
 • Two strips of 12 tubes each: one labeled *Buffer* and one labeled *FR*.
 • One 1.5 mL Eppendorf tube labeled *Frag MM*.
 • Plate of purified PCR product from the previous stage.

Preheat the Thermal Cycler Block
The block must be heated to 37 °C before samples are loaded.

To preheat the thermal cycler:
1. Power on the thermal cycler and preheat the block to 37 °C.
2. Allow it to heat for 10 minutes before loading samples.
Prepare the Samples for Fragmentation

Add Fragmentation Buffer to Samples

1. **IMPORTANT:** All additions in this procedure must be performed on ice.

To prepare the samples for Fragmentation:

1. Aliquot 28 µL of 10X Fragmentation Buffer to each tube of the strip tubes labeled Buffer.
2. Using a 12-channel P20 pipette, add 5 µL of Fragmentation Buffer to each sample in the 96-well reaction plate.
 Check your pipette tips each time to ensure that all of the buffer has been dispensed.
 The total volume in each well is now 50 µL.

Dilute the Fragmentation Reagent

1. **IMPORTANT:** The concentration of stock Fragmentation Reagent (U/µL) may vary from lot-to-lot. Therefore, read the label on the tube and record the stock concentration before diluting this reagent.

To dilute the Fragmentation Reagent:

1. Read the Fragmentation Reagent tube label and record the concentration.
2. Dilute the Fragmentation Reagent to 0.1 U/µL as described below using the appropriate recipe from Table 4.46:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>2 U/µL</th>
<th>2.25 U/µL</th>
<th>2.5 U/µL</th>
<th>2.75 U/µL</th>
<th>3 U/µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuGENE water</td>
<td>306 µL</td>
<td>308 µL</td>
<td>309.6 µL</td>
<td>310.9 µL</td>
<td>312 µL</td>
</tr>
<tr>
<td>10X Fragmentation Buffer</td>
<td>36 µL</td>
<td>36 µL</td>
<td>36 µL</td>
<td>36 µL</td>
<td>36 µL</td>
</tr>
<tr>
<td>Fragmentation Reagent</td>
<td>18 µL</td>
<td>16 µL</td>
<td>14.4 µL</td>
<td>13.1 µL</td>
<td>12 µL</td>
</tr>
<tr>
<td>Total (enough for 48 samples)</td>
<td>360 µL</td>
<td>360 µL</td>
<td>360 µL</td>
<td>360 µL</td>
<td>360 µL</td>
</tr>
</tbody>
</table>
A. To the 1.5 mL Eppendorf tube on ice:
 1) Add the AccuGENE water and Fragmentation Buffer.
 2) Allow to cool on ice for 5 minutes.
B. Remove the Fragmentation Reagent from the freezer and:
 1) Immediately pulse spin for 3 sec.
 Spinning is required because the Fragmentation Reagent tends to cling to the top of the tube, making it warm quicker.
 2) Immediately place in a cooler.
C. Add the Fragmentation Reagent to the 1.5 mL Eppendorf tube.
D. Vortex the diluted Fragmentation Reagent at high speed 3 times, 1 sec each time.
E. Pulse spin for 3 sec and immediately place on ice.
3. Proceed immediately to the next set of steps, Add Diluted Fragmentation Reagent to the Samples.

Add Diluted Fragmentation Reagent to the Samples

To add diluted Fragmentation Reagent to the samples:
1. Quickly and on ice, aliquot 28 µL of diluted Fragmentation Reagent to each tube of the strip tubes labeled FR.
 Avoid introducing air bubbles at the bottom of the strip tubes to ensure the accurate transfer of 5 µL diluted DNA to each sample.
2. Using a 12-channel P20 pipette, add 5 µL of diluted Fragmentation Reagent to each sample.
 Do not pipette up and down.

<table>
<thead>
<tr>
<th>Sample with Fragmentation Buffer</th>
<th>50 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diluted Fragmentation Reagent (0.1 U/µL)</td>
<td>5 µL</td>
</tr>
<tr>
<td>Total</td>
<td>55 µL</td>
</tr>
</tbody>
</table>

3. Seal the plate and inspect the edges to ensure that it is tightly sealed.

IMPORTANT: To minimize solution loss due to evaporation, make sure that the plate is tightly sealed prior to loading onto the thermal cycler. The MJ thermal cyclers are more prone to evaporation.

4. Vortex the center of the plate at high speed for 3 sec.
5. Place the plate in a chilled plastic plate holder and spin it down at 4 °C at 2000 rpm for 30 sec.

6. Immediately load the plate onto the pre-heated block of the thermal cycler (37 °C) and run the GW5.0 Fragment program.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>35 minutes</td>
</tr>
<tr>
<td>95°C</td>
<td>15 minutes</td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
</tr>
</tbody>
</table>

7. Discard any remaining diluted Fragmentation Reagent. Diluted Fragmentation Reagent should never be reused.

What To Do Next

Proceed directly to the next stage. Concurrently, check the fragmentation reaction by running gels as described under *Check the Fragmentation Reaction on page 111.*
Check the Fragmentation Reaction

The instructions below are for running 4% TBE gels. For information on running E-Gel 48 4% agarose gels, refer to Appendix C, E-gels, on page 211.

To ensure that fragmentation was successful:

1. When the GW5.0 Fragment program is finished:
 A. Remove the plate from the thermal cycler.
 B. Spin down the plate at 2000 rpm for 30 sec, and place in a cooling chamber on ice.

2. Dilute 1.5 µL of each fragmented PCR product with 4 µL gel loading dye.

3. Run on 4% TBE gel with the BioNexus All Purpose Hi-Lo ladder at 120V for 30 minutes to 1 hour.

4. Inspect the gel and compare it against the example shown in Figure 4.14 below.

Figure 4.14 Typical example of fragmented PCR products run on 4% TBE agarose gel at 120V for 30 minutes to 1 hour. Average fragment size is < 180 bp.
Stage 10: Labeling

About this Stage

During this stage, you will:
- Label the fragmented samples using the DNA Labeling Reagent.
- Prepare the Labeling Master Mix.
- Add the mix to each sample.
- Place the samples onto a thermal cycler and run the GW5.0 Label program.

Location and Duration

- Main Lab
- Hands-on time: 30 minutes
- GW5.0 Label thermal cycler program time: 4.25 hours

Input Required from Previous Stage

The input required from Stage 9: Fragmentation is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plate of fragmented DNA</td>
</tr>
</tbody>
</table>

Equipment and Consumables Required

The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

IMPORTANT: Use only the PCR plate, adhesive film and thermal cyclers listed in Table 4.1 on page 27.
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 samples.

Table 4.49 Reagents Required for Stage 10: Labeling

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vial</td>
<td>DNA Labeling Reagent (30 mM)</td>
</tr>
<tr>
<td>1 vial</td>
<td>Terminal Deoxynucleotidyl Transferase (TdT; 30 U/µL)</td>
</tr>
<tr>
<td>1 vial</td>
<td>Terminal Deoxynucleotidyl Transferase Buffer (TdT Buffer; 5X)</td>
</tr>
</tbody>
</table>
Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

IMPORTANT: To minimize sample loss due to evaporation, be sure that the plate is tightly sealed before running the GW5.0 Label thermal cycler program.

Prepare the Reagents, Consumables and Other Components

Thaw Reagents

Thaw the following reagents on ice:
- 5X TdT Buffer
- DNA Labeling Reagent

IMPORTANT: Leave the TdT enzyme at −20 °C until ready to use.

Prepare Your Work Area

To prepare the work area:

1. Place a double cooling chamber and a cooler on ice.
2. Prepare the reagents as follows:
 - Vortex each reagent at high speed 3 times, 1 sec each time.
 - Pulse spin for 3 sec.
 - Place in the cooling chamber.
3. Label one 15 mL centrifuge tube MM, and place on ice.
4. Label and place the following in the cooling chamber:
 - One strip of 12 tubes labeled MM
 - Plate of fragmented reactions from the previous stage

Preheat the Thermal Cycler Block

The block must be heated to 37 °C before samples are loaded.

To preheat the thermal cycler block:

1. Turn on the thermal cycler and preheat the block to 37 °C.
2. Allow it to heat for 10 minutes before loading samples.
Prepare the Labeling Master Mix

Preparation

Keep all reagents and tubes on ice while preparing the Labeling Master Mix.

To prepare the Labeling Master Mix:

1. Add the following to the 15 mL centrifuge tube on ice using the volumes shown in **Table 4.50 on page 115**:
 - 5X TdT Buffer
 - DNA Labeling Reagent
2. Remove the TdT enzyme from the freezer and immediately place in the cooler.
3. Pulse spin the enzyme for 3 sec; then immediately place back in the cooler.
4. Add the TdT enzyme to the master mix.
5. Vortex the master mix at high speed 3 times, 1 sec each time.
6. Pulse spin for 3 sec.
7. Immediately proceed to the next set of steps, *Add the Labeling Master Mix to the Samples*.

Table 4.50 Labeling Master Mix

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 Sample</th>
<th>48 Samples (15% extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TdT Buffer (5X)</td>
<td>14 µL</td>
<td>772.8 µL</td>
</tr>
<tr>
<td>DNA Labeling Reagent (30 mM)</td>
<td>2 µL</td>
<td>110.4 µL</td>
</tr>
<tr>
<td>TdT enzyme (30 U/µL)</td>
<td>3.5 µL</td>
<td>193.2 µL</td>
</tr>
<tr>
<td>Total</td>
<td>**19.5 µL</td>
<td>1076.4 µL</td>
</tr>
</tbody>
</table>

Add the Labeling Master Mix to the Samples

To add the Labeling Master Mix to the samples:

Keep samples in the cooling chamber and all tubes on ice when making additions.

1. Aliquot 89 µL of Labeling Master Mix to each tube of the strip tubes.
2. Add the Labeling Master Mix as follows:
 - **A. Using a 12-channel P20 pipette, aliquot 19.5 µL of Labeling Master Mix to each sample.**
B. Pipette up and down one time to ensure that all of the mix is added to the samples. The total volume in each well is now 73 µL.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmented DNA (less 1.5 µL for gel analysis)</td>
<td>53.5 µL</td>
</tr>
<tr>
<td>Labeling Mix</td>
<td>19.5 µL</td>
</tr>
<tr>
<td>Total</td>
<td>73 µL</td>
</tr>
</tbody>
</table>

3. Seal the plate tightly with adhesive film.

IMPORTANT: Check to ensure that the plate is tightly sealed, particularly around the wells on the edge of the plate. The plate must be tightly sealed to minimize evaporation while on the thermal cycler.

4. Vortex the center of the plate at high speed for 3 sec.
5. Spin down the plate at 2000 rpm for 30 sec.
6. Place the plate on the pre-heated thermal cycler block, and run the GW5.0 Label program.

<table>
<thead>
<tr>
<th>GW5.0 Label Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>37°C</td>
</tr>
<tr>
<td>95°C</td>
</tr>
<tr>
<td>4°C</td>
</tr>
</tbody>
</table>

7. When the GW5.0 Label program is finished:
 A. Remove the plate from the thermal cycler.
 B. Spin down the plate at 2000 rpm for 30 sec.

What To Do Next

Do one of the following:

- Proceed to the next stage.
- If not proceeding directly to the next stage, freeze the samples at –20 °C.
Stage 11: Target Hybridization

About this Stage
During this stage, each reaction is loaded onto a Genome-Wide Human SNP Array 5.0. Two methods for performing this stage are presented.

- **Method 1 — Using a GeneAmp® PCR System 9700**
 Requires the use of a GeneAmp® PCR System 9700 located adjacent to the hybridization ovens. Samples are on a 96-well reaction plate. See *Method 1 — Using a GeneAmp® PCR System 9700 on page 124.*

- **Method 2 — Using an Applied Biosystems 2720 Thermal Cycler or an MJ Tetrad PTC-225 Thermal Cycler**
 Requires the use of an Applied Biosystems 2720 Thermal Cycler or an MJ Tetrad PTC-225 Thermal Cycler located adjacent to the hybridization ovens. Samples are on a 96-well reaction plate. See *Method 2 — Using an Applied Biosystems 2720, MJ Tetrad PTC-225, or MJ Tetrad 2 Thermal Cycler on page 127.*

First, you will prepare a Hybridization Master Mix and add the mix to each sample. Then, you will denature the samples on a thermal cycler.

After denaturation, you will load each sample onto a Genome-Wide Human SNP Array 5.0 – one sample per array. The arrays are then placed into a hybridization oven that has been preheated to 50 °C. Samples are left to hybridize for 16 to 18 hours.

NOTE: Two operators are required for all of the methods.

Location and Duration
- Main Lab
- Hands-on time: 45 minutes
- Hybridization time: 16 to 18 hours

Input Required from Previous Stage
The input required from *Stage 10: Labeling* is:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plate of labeled DNA</td>
</tr>
</tbody>
</table>
Equipment and Consumables Required

The following equipment and consumables are required for this stage. Refer to Appendix A for vendor and part number information.

1 IMPORTANT: Increased variability in Genome-Wide SNP 5.0 Assay performance has been observed in GeneChip® Hybridization Oven 640 models (P/N 800138 or 800189) manufactured prior to 2001. Check the serial number of your hybridization oven(s). If the serial numbers are 11214 or lower, contact Affymetrix for an upgrade.

The following table lists the equipment and consumables required.

Table 4.52 Equipment and Consumables Required for Stage 11: Target Hybridization

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cooling chamber, chilled to 4 °C (do not freeze)</td>
</tr>
<tr>
<td>48</td>
<td>Genome-Wide Human SNP Array 5.0 (one array per sample)</td>
</tr>
<tr>
<td>1</td>
<td>GeneChip® Hybridization Oven 640</td>
</tr>
<tr>
<td>1</td>
<td>Ice bucket, filled with ice</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P200</td>
</tr>
<tr>
<td>1</td>
<td>Pipette, single channel P1000</td>
</tr>
<tr>
<td>As needed</td>
<td>Pipette tips for pipettes listed above; full racks</td>
</tr>
<tr>
<td>1</td>
<td>Plate, Bio-Rad 96-well, P/N MLP-9601**</td>
</tr>
<tr>
<td>1</td>
<td>Plate centrifuge</td>
</tr>
<tr>
<td>2</td>
<td>Plate holders, centrifuge</td>
</tr>
<tr>
<td>1</td>
<td>Plate seal**</td>
</tr>
<tr>
<td>1</td>
<td>Solution basin, 55 mL</td>
</tr>
<tr>
<td>1</td>
<td>Thermal cycler**</td>
</tr>
<tr>
<td>See About this Stage on page 117.</td>
<td></td>
</tr>
<tr>
<td>2 per array</td>
<td>Tough-Spots®</td>
</tr>
<tr>
<td>1</td>
<td>Tube, centrifuge 50 mL</td>
</tr>
<tr>
<td>1</td>
<td>Vortexer</td>
</tr>
</tbody>
</table>
Reagents Required

The following reagents are required for this stage. Refer to Appendix A for vendor and part number information. The amounts listed are sufficient to process 48 samples.

Table 4.53 Reagents Required for Stage 11: Target Hybridization

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mL</td>
<td>Denhardt's Solution (50X)</td>
</tr>
<tr>
<td>1.5 mL</td>
<td>DMSO (100%)</td>
</tr>
<tr>
<td>0.5 mL</td>
<td>EDTA (0.5 M)</td>
</tr>
<tr>
<td>1 mL</td>
<td>Herring Sperm DNA (HSDNA; 10 mg/mL)</td>
</tr>
<tr>
<td>500 µL</td>
<td>Human Cot-1 DNA® (1 mg/mL)</td>
</tr>
<tr>
<td>80 g</td>
<td>MES Hydrate SigmaUltra</td>
</tr>
<tr>
<td>200 g</td>
<td>MES Sodium Salt</td>
</tr>
<tr>
<td>16 mL</td>
<td>Tetramethyl Ammonium Chloride (TMACL; 5M)</td>
</tr>
<tr>
<td>10 mL</td>
<td>Tween-20, 10%</td>
</tr>
<tr>
<td>250 µL</td>
<td>Oligo Control Reagent (OCR), 0100</td>
</tr>
</tbody>
</table>
Important Information About This Stage

To help ensure the best results, carefully read the information below before you begin this stage of the protocol.

1 IMPORTANT:

- This procedure requires two operators working simultaneously when loading samples onto arrays and placing arrays in the hybridization ovens.

- It is critical that the samples remain on a thermal cycler at 49 °C after denaturation and while being loaded onto arrays. If you have a GeneAmp PCR System 9700 located adjacent to the hybridization ovens, we recommend using method 1. Otherwise, you must use method 2 (see About this Stage on page 117).

- About DMSO:

 When adding to the Hybridization Master Mix, pipette DMSO into the middle of the tube. Do not touch the sides of the tube as the DMSO can leach particles out of the plastic which, in turn, may cause high background.

 DMSO is light sensitive and must be stored in a dark glass bottle. Do not store in a plastic container.

- Be sure to equilibrate the arrays to room temperature; otherwise, the rubber septa may crack and the array may leak.

- An accurate hybridization temperature is critical for this assay. Therefore, we recommend that your hybridization ovens be serviced at least once per year to ensure that they are operating within specifications.

- Gloves, safety glasses, and lab coats must be worn when preparing the Hybridization Master Mix.

- Consult the appropriate MSDS for reagent storage and handling requirements.
Prepare the Reagents, Consumables and Other Components

Prepare a 12X MES Stock Solution
The 12X MES stock solution can be prepared in bulk and kept for at least one month if properly stored. Proper storage:
- Protect from light using aluminum foil
- Keep at 4 °C

IMPORTANT: Do not autoclave. Store between 2 °C and 8 °C, and shield from light using aluminum foil. Discard solution if it turns yellow.

To prepare 1000 mL of 12X MES Stock Solution: (1.25 M MES, 0.89 M [Na+])
1. Combine:
 - 70.4 g MES hydrate
 - 193.3 g MES sodium salt
 - 800 mL AccuGENE® water
2. Mix and adjust volume to 950 mL.
3. Test the pH.
 The pH should be between 6.5 and 6.7.
4. Adjust the pH so it falls between 6.5 and 6.7.
5. Adjust the volume to 1000 mL.
6. Filter the solution through a 0.2 µm filter.
7. Protect from light using aluminum foil and store at 4 °C.

Preheat the Hybridization Ovens
To preheat the hybridization ovens:
1. Turn each oven on and set the temperature to 50 °C.
2. Set the rpm to 60.
3. Turn the rotation on and allow to preheat for 1 hour before loading arrays.

IMPORTANT: An accurate hybridization temperature is critical for this assay. Therefore, we recommend that your hybridization ovens be serviced at least once per year to ensure that they are operating within the manufacturer’s specifications.
Thaw Reagents
If the labeled samples from the previous stage were frozen:
1. Thaw the plate on the bench top.
2. Vortex the center of the plate at high speed for 3 sec.
3. Spin down the plate at 2000 rpm for 30 sec.
4. Place in a cooling chamber on ice.
5. If hybridizing samples using Method 1 or 2, the labeled samples must be placed in a Bio-Rad unskirted 96-well plate (P/N MLP-9601). For Method 2, the used wells on the plate are cut into 2 strips of 24 wells each.

Preheat the Thermal Cycler Lid
Power on the thermal cycler to preheat the lid. Leave the block at room temperature.

Prepare the Arrays
To prepare the arrays:
1. Unwrap the arrays and place on the bench top, septa-side up.
2. Mark each array with a meaningful designation (e.g., a number) to ensure that you know which sample is loaded onto each array.
3. Allow the arrays to warm to room temperature by leaving on the bench top 10 to 15 minutes.
4. Insert a 200 µL pipette tip into the upper right septum of each array.

IMPORTANT: To ensure that the data collected during scanning is associated with the correct sample, number the arrays in a meaningful way. It is critical that you know which sample is loaded onto each array.

Prepare the Hybridization Master Mix
As an option, you can prepare a larger volume of Hybridization Master Mix than required. The extra mix can be aliquoted and stored at −20 °C for up to one week.

Preparing Fresh Hybridization Master Mix
To prepare the Hybridization Master Mix:
1. To the 50 mL centrifuge tube, add the reagents in the order shown in Table 4.54.
 DMSO addition: pipette directly into the solution of other reagents. Avoid pipetting along the side of the tube.
2. Mix well.
3. If making a larger volume, aliquot out 11 mL, and store the remainder at –20 °C for up to one week.

Table 4.54 Hybridization Master Mix

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 Array</th>
<th>48 Arrays (15% extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES (12X; 1.25 M)</td>
<td>12 µL</td>
<td>660 µL</td>
</tr>
<tr>
<td>Denhardt’s Solution (50X)</td>
<td>13 µL</td>
<td>715 µL</td>
</tr>
<tr>
<td>EDTA (0.5 M)</td>
<td>3 µL</td>
<td>165 µL</td>
</tr>
<tr>
<td>HSDNA (10 mg/mL)</td>
<td>3 µL</td>
<td>165 µL</td>
</tr>
<tr>
<td>OCR, 0100</td>
<td>2 µL</td>
<td>110 µL</td>
</tr>
<tr>
<td>Human Cot-1 DNA® (1 mg/mL)</td>
<td>3 µL</td>
<td>165 µL</td>
</tr>
<tr>
<td>Tween-20 (3%)</td>
<td>1 µL</td>
<td>55 µL</td>
</tr>
<tr>
<td>DMSO (100%)</td>
<td>13 µL</td>
<td>715 µL</td>
</tr>
<tr>
<td>TMACL (5 M)</td>
<td>140 µL</td>
<td>7.7 mL</td>
</tr>
<tr>
<td>Total</td>
<td>190 µL</td>
<td>10.45 mL</td>
</tr>
</tbody>
</table>

Using Premixed Hybridization Master Mix

Hybridization Master Mix can be made ahead of time, aliquoted and stored for 1 week at –20 °C.

To prepare stored Hybridization Master Mix:

1. Place the stored Hybridization Master Mix on the bench top, and allow to warm to room temperature.
2. Vortex at high speed until the mixture is homogeneous and without precipitates (up to 5 minutes).
3. Pulse spin for 3 sec.
Method 1 — Using a GeneAmp® PCR System 9700

The thermal cycler used for this method must be a GeneAmp PCR System 9700 located adjacent to the hybridization ovens. This particular thermal cycler is required because of the way the lid operates. You can slide it back one row at a time as samples are loaded onto arrays. Keeping the remaining rows covered prevents condensation in the wells.

Add Hybridization Master Mix and Denature the Samples

To add Hybridization Master Mix and denature the samples:

1. Pour 11 mL Hybridization Master Mix into a solution basin.
2. Using a 12-channel P200 pipette, add 190 µL of Hybridization Master Mix to each sample on the Label Plate.
 Total volume in each well is 263 µL.
3. Seal the plate tightly with adhesive film.
4. Vortex the center of the plate for 3 minutes.
5. Spin down the plate at 2000 rpm for 30 sec.
6. Cut the adhesive film between each row of samples.
 Do not remove the film.
7. Place the plate onto the thermal cycler and close the lid.
8. Run the GW5.0 Hyb program.

<table>
<thead>
<tr>
<th>Table 4.55 GW5.0 Hyb Thermal Cycler Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW5.0 Hyb Program</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>95 °C</td>
</tr>
<tr>
<td>49 °C</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>10 minutes</td>
</tr>
<tr>
<td>Hold</td>
</tr>
</tbody>
</table>
Load the Samples onto Arrays

This procedure requires 2 operators working simultaneously. Operator 1 loads the samples onto the arrays; Operator 2 covers the septa with Tough-Spots and loads the arrays into the hybridization ovens.

To load the samples onto arrays:

Operator 1 Tasks

1. When the plate reaches 49 °C, slide back the lid on the thermal cycler enough to expose the first row of samples only.
2. Remove the film from the first row.
3. Using a single-channel P200 pipette, remove 200 µL of denatured sample from the first well.
4. Immediately inject the sample into an array.
5. Pass the array to Operator 2.
6. Remove 200 µL of sample from the next well and immediately inject it into an array.
7. Pass the array to Operator 2.
8. Repeat this process one sample at a time until the entire row is loaded.
9. Place a fresh strip of adhesive film over the completed row.
10. Slide the thermal cycler lid back to expose the next row of samples.
11. Repeat steps 3 through 10 until all of the samples have been loaded onto arrays.

Operator 2 Tasks

1. Cover the septa on each array with a Tough-Spot (Figure 4.15).
2. For every 4 arrays:

 A. Load the arrays into an oven tray evenly spaced.
 B. Immediately place the tray into the hybridization oven.

 Do not allow loaded arrays to sit at room temperature for more than approximately 1.5 minute. Ensure that the oven is balanced as the trays are loaded, and ensure that the trays are rotating at 60 rpm at all times.

 Because you are loading 4 arrays per tray, each hybridization oven will have a total of 32 arrays.
Operators 1 and 2

- Load no more than 32 arrays in one hybridization oven at a time.
- All 48 samples should be loaded within 1 hour.
- Store the remaining samples and any samples not yet hybridized in a tightly sealed plate at -20 °C.
- Allow the arrays to rotate at 50 °C, 60 rpm for 16 to 18 hours.

IMPORTANT: Allow the arrays to rotate in the hybridization ovens for 16 to 18 hours at 50 °C and 60 rpm. This temperature is optimized for this product, and should be stringently followed.

Figure 4.15 Applying Tough-Spots® to the array cartridge
Method 2 — Using an Applied Biosystems 2720, MJ Tetrad PTC-225, or MJ Tetrad 2 Thermal Cycler

For this method, you can use an:
- Applied Biosystems 2720 Thermal Cycler
- MJ Tetrad PTC-225 Thermal Cycler
- MJ Tetrad 2

The thermal cycler must be located adjacent to the hybridization ovens. Because the lids on these thermal cyclers do not slide back, you will process 24 samples at a time.

Add Hybridization Master Mix and Denature

To add Hybridization Master Mix and denature the samples:

1. Pour 11 mL Hybridization Master Mix into a solution basin.
2. Using a 12-channel P200 pipette, add 190 µL of Hybridization Master Mix to each sample on the Label Plate.
 - Total volume in each well is 263 µL.
3. Seal the plate tightly with adhesive film.
4. Vortex the center of the plate for 3 minutes.
5. Cut the used wells into 2 strips of two rows each.
6. Put each strip of 24 samples into a plate holder.
7. Spin down the strips at 2000 rpm for 30 sec.
8. Cut the adhesive film between each row of samples.
 - Do not remove the film.
9. Place one set of 24 wells onto the thermal cycler and close the lid.
10. Keep the remaining sets of wells in a cooling chamber on ice.
11. Run the GW5.0 Hyb program.

<table>
<thead>
<tr>
<th>GW5.0 Hyb Program</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95 °C</td>
<td>10 minutes</td>
</tr>
<tr>
<td></td>
<td>49 °C</td>
<td>Hold</td>
</tr>
</tbody>
</table>
Load the Samples onto Arrays
This procedure requires 2 operators working simultaneously. Operator 1 loads the samples onto the arrays; Operator 2 covers the septa with Tough-Spots and loads the arrays into the hybridization ovens.

To load the samples onto arrays:

Operator 1 Tasks
1. When the plate reaches 49 °C, open the lid on the thermal cycler.
2. Remove the film from the first row.
3. Using a single-channel P200 pipette, remove 200 µL of denatured sample from the first well.
4. Immediately inject the sample into an array.
5. Pass the array to Operator 2.
6. Remove 200 µL of denatured sample and immediately inject it into an array.
7. Pass the array to Operator 2.
8. Repeat this process one sample at a time until all 24 samples are loaded onto arrays.
9. Cover the wells with a fresh strip of adhesive film and place in the cooling chamber on ice.
10. Remove the next strip of 24 wells and place it on the thermal cycler.
11. Run the GW5.0 Hyb program.
12. Repeat steps 1 through 11 until all of the samples have been loaded onto arrays.

Operator 2 Tasks
1. Cover the septa on each array with a Tough-Spot (Figure 4.15).
2. When 4 arrays are loaded and the septa are covered:
 A. Load the arrays into an oven tray evenly spaced.
 B. Immediately place the tray into the hybridization oven.
 Do not allow loaded arrays to sit at room temperature for more than approximately 1 minute. Ensure that the oven is balanced as the trays are loaded, and ensure that the trays are rotating at 60 rpm at all times.
 Because you are loading 4 arrays per tray, each hybridization oven will have a total of 32 arrays.
Operators 1 and 2

- Load no more than 32 arrays in one hybridization oven at a time.
- All 48 samples should be loaded within 1 hour.
- Store the remaining samples and any samples not yet hybridized in a tightly sealed plate at -20 °C.
- Allow the arrays to rotate at 50 °C, 60 rpm for 16 to 18 hours.

IMPORTANT: Allow the arrays to rotate in the hybridization ovens for 16 to 18 hours at 50 °C and 60 rpm. This temperature is optimized for this product, and should be stringently followed.
This chapter contains instructions for using the:
- Fluidics Station 450 to wash and stain arrays
- GeneChip® Scanner 3000 7G to scan arrays

After completing the procedures in this chapter, the scanned array image (.dat file) is ready for analysis.

Equipment and Consumables Required

The following equipment and consumables are required for washing, staining and scanning arrays.

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeneChip® Scanner 3000 7G</td>
<td>Affymetrix</td>
<td>—</td>
</tr>
<tr>
<td>GeneChip® Fluidics Station 450</td>
<td>Affymetrix</td>
<td>—</td>
</tr>
<tr>
<td>GeneChip® Operating Software</td>
<td>Affymetrix</td>
<td>—</td>
</tr>
<tr>
<td>Sterile, RNase-free, microcentrifuge vials, 1.5 mL</td>
<td>USA Scientific</td>
<td>1415-2600 (or equivalent)</td>
</tr>
<tr>
<td>Micropipettors, (P-2, P-20, P-200, P-1000)</td>
<td>Rainin Pipetman®</td>
<td>—</td>
</tr>
<tr>
<td>Sterile-barrier pipette tips and non-barrier pipette tips</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tygon® Tubing, 0.04” inner diameter</td>
<td>Cole-Parmer</td>
<td>H-06418-04</td>
</tr>
<tr>
<td>Tough-Spots®, Label Dots</td>
<td>USA Scientific</td>
<td>9185-0000</td>
</tr>
</tbody>
</table>
Reagents Required

The following reagents are required for washing and staining arrays. These reagents are recommendations, and have been tested and evaluated by Affymetrix scientists. Information and part numbers listed are based on U.S. catalog information.

Table 5.2 Reagents Required for Washing and Staining Arrays

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Vendor</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuGENE® Molecular Biology-Grade Water, 1 L</td>
<td>Cambrex</td>
<td>51200</td>
</tr>
<tr>
<td>Distilled water</td>
<td>Invitrogen</td>
<td>15230147</td>
</tr>
<tr>
<td>20X SSPE (3 M NaCl, 0.2 M NaH2PO4, 0.02 M EDTA)</td>
<td>Cambrex</td>
<td>51214</td>
</tr>
<tr>
<td>Anti-streptavidin antibody (goat), biotinylated</td>
<td>Vector Laboratories</td>
<td>BA-0500</td>
</tr>
<tr>
<td>(reconstitute according to product instructions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Phycerythrin Streptavidin</td>
<td>Molecular Probes</td>
<td>S-866</td>
</tr>
<tr>
<td>10% Surfact-Amps® 20 (Tween-20)</td>
<td>Pierce Chemical</td>
<td>28320</td>
</tr>
<tr>
<td>Bleach (5.25% Sodium Hypochlorite)</td>
<td>VWR Scientific</td>
<td>21899-504 (or equivalent)</td>
</tr>
<tr>
<td>Denhardt’s Solution, 50X concentrate</td>
<td>Sigma-Aldrich</td>
<td>D2532</td>
</tr>
<tr>
<td>MES hydrate</td>
<td>Sigma-Aldrich</td>
<td>M5287</td>
</tr>
<tr>
<td>MES Sodium Salt</td>
<td>Sigma-Aldrich</td>
<td>M5057</td>
</tr>
<tr>
<td>5 M NaCl, RNase-free, DNase-free</td>
<td>Ambion</td>
<td>9760G</td>
</tr>
</tbody>
</table>
Reagent Preparation

Wash A: Non-Stringent Wash Buffer
(6X SSPE, 0.01% Tween 20)

For 1000 mL:
- 300 mL of 20X SSPE
- 1.0 mL of 10% Tween-20
- 699 mL of water

Filter through a 0.2 μm filter.

Store at room temperature.

Wash B: Stringent Wash Buffer
(0.6X SSPE, 0.01% Tween 20)

For 1000 mL:
- 30 mL of 20X SSPE
- 1.0 mL of 10% Tween-20
- 969 mL of water

Filter through a 0.2 μm filter.

Store at room temperature.

The pH should be 8.

IMPORTANT: Prepare Wash B in smaller quantities to avoid long term storage. The container must be sealed tightly to avoid changes in salt concentration due to evaporation.

0.5 mg/mL Anti-Streptavidin Antibody

Resuspend 0.5 mg in 1 mL of water.

Store at 4°C.
12X MES Stock Buffer

(1.25 M MES, 0.89 M [Na⁺])

For 1,000 mL:
- 70.4g of MES hydrate
- 193.3g of MES Sodium Salt
- 800 mL of Molecular Biology Grade Water
Mix and adjust volume to 1,000 mL.

The pH should be between 6.5 and 6.7.
Filter through a 0.2 µm filter.

IMPORTANT: Do not autoclave. Store at 2°C to 8°C, and shield from light. Discard solution if yellow.

1X Array Holding Buffer

(Final 1X concentration is 100 mM MES, 1M [Na⁺], 0.01% Tween-20)

For 100 mL:
- 8.3 mL of 12X MES Stock Buffer
- 18.5 mL of 5 M NaCl
- 0.1 mL of 10% Tween-20
- 73.1 mL of water
Store at 2°C to 8°C, and shield from light.
Experiment and Fluidics Station Setup

The following instructions are for GeneChip® Operating Software (GCOS) 1.4 client (1.3 server).

Register a New Experiment in GCOS

To register a new experiment:

1. From the File menu click New Experiment.
 The New Experiment window appears in the display pane.
 • The top half of the display pane refers to the sample and the bottom half refers to the experiment.

2. Enter information into the appropriate boxes.
 • Fields that are highlighted in bold require an entry.
Drop-down menus are available for Sample/Project information (default information can be used or new information can be entered).

The Experiment Name must be unique.

Appropriate library files must be installed for a array to appear in the drop-down menu.

3. From the File menu click Save As, or click the Save icon on the tool bar to register the experiment into the database.

TIP: The Sample Information fields can be customized. See the GeneChip® Operating Software User’s Guide for further information.

Prepare the Fluidics Station

The Fluidics Station 450 is used to wash and stain the arrays; it is operated using GeneChip Operating Software.

Set Up the Fluidics Station

To set up the Fluidics Station:

1. Turn on the Fluidics Station using the toggle switch on the lower left side of the machine.

2. Select Run → Fluidics from the menu bar in GCOS.

 The Fluidics Station dialog box appears with a drop-down list for selecting the experiment name for each of the fluidics station modules. A second drop-down list is accessed for choosing the Protocol for each of the fluidics station modules. Use the radio buttons to access each module.

 NOTE: Refer to the GeneChip® Fluidics Station User’s Guide for instructions on connecting and addressing multiple fluidics stations.

Prime the Fluidics Station

Primeing ensures the lines of the fluidics station are filled with the appropriate buffers and the fluidics station is ready to run fluidics station protocols.

Primeing should be done:

• when the fluidics station is first started.

• when wash solutions are changed.

• before washing, if a shutdown has been performed.

• if the LCD window instructs the user to prime.
To prime the Fluidics Station:

1. To prime the fluidics station, select **Protocol** in the Fluidics Station dialog box.
2. Choose **Prime_450** for the respective modules in the Protocol drop-down list.
3. Change the intake buffer reservoir A to **Non-Stringent Wash Buffer**, and intake buffer reservoir B to **Stringent Wash Buffer**.
4. Click **Run** for each module to begin priming.
5. Follow LCD instructions.

NOTE: All modules can be selected by selecting the “All Modules” button in the fluidics dialog box.

Array Wash and Stain

The Affymetrix staining protocol for mapping arrays is a three stage process. The process consists of 1) a Streptavidin Phycoerythin (SAPE) stain, 2) an antibody amplification step, and 3) a final stain with Streptavidin Phycoerythin (SAPE). Following staining, the array is filled with Array Holding Buffer prior to scanning.

To wash and stain arrays:

1. After 16 to 18 hours of hybridization, remove the hybridization cocktail from the array and transfer it to the corresponding well of a 96-well plate.
 Store on ice during the procedure or at –80°C for long-term storage.
2. Fill the array completely with 270 µL of Array Holding Buffer.
 See **Array Holding Buffer on page 139** for buffer recipe.

NOTE: Arrays can be stored in the Array Holding Buffer at 4°C for up to 3 hours before proceeding with washing and staining. Equilibrate arrays to room temperature before washing and staining.

Prepare Buffers and Solutions

Prepare the following buffers and solutions (recipes follow). Volumes given are sufficient for one array. Mix well.

- Stain Buffer
- SAPE Stain Solution
- Antibody Stain Solution
- Array Holding Buffer
Stain Buffer

Mix well.

<table>
<thead>
<tr>
<th>Components</th>
<th>1X</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>800.04 µL</td>
<td></td>
</tr>
<tr>
<td>SSPE (20X)</td>
<td>360 µL</td>
<td>6X</td>
</tr>
<tr>
<td>Tween-20 (3%)</td>
<td>3.96 µL</td>
<td>0.01%</td>
</tr>
<tr>
<td>Denhardt’s (50X)</td>
<td>24 µL</td>
<td>1X</td>
</tr>
</tbody>
</table>

| Subtotal | 1188 µL | |
| Subtotal/2 | 594 µL | |

SAPE Stain Solution

Streptavidin Phycoerythrin (SAPE) should be stored in the dark at 4°C, either foil-wrapped or in an amber tube. Remove SAPE from refrigerator and tap the tube to mix well before preparing stain solution. Always prepare the SAPE stain solution immediately before use. Mix well. Do not freeze either concentrated SAPE or diluted SAPE stain solution.

Table 5.4 SAPE Solution Mix

<table>
<thead>
<tr>
<th>Components</th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stain Buffer</td>
<td>594 µL</td>
<td>1X</td>
</tr>
<tr>
<td>1 mg/mL Streptavidin Phycoerythrin (SAPE)</td>
<td>6.0 µL</td>
<td>10 µg/mL</td>
</tr>
<tr>
<td>Total</td>
<td>600 µL</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: A vial containing SAPE Stain Solution must be placed in sample holder 1 for each module used.
Antibody Stain Solution

Mix well.

Table 5.5 Antibody Solution Mix

<table>
<thead>
<tr>
<th>Components</th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stain Buffer</td>
<td>594 µL</td>
<td>1X</td>
</tr>
<tr>
<td>0.5 mg/mL biotinylated antibody</td>
<td>6 µL</td>
<td>5 µg/mL</td>
</tr>
<tr>
<td>Total</td>
<td>600 µL</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: A vial containing Antibody Stain Solution must be placed in sample holder 2 for each module used.

Array Holding Buffer

Mix well.

Table 5.6 Array Holding Buffer

<table>
<thead>
<tr>
<th>Components</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>MES Stock Buffer (12X)</td>
<td>8.3 mL</td>
</tr>
<tr>
<td>5 M NaCl</td>
<td>18.5 mL</td>
</tr>
<tr>
<td>Tween-20 (10%)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>Water</td>
<td>73.1 mL</td>
</tr>
<tr>
<td>Total</td>
<td>100 mL</td>
</tr>
</tbody>
</table>

Add 1 mL of Array Holding Buffer to each microcentrifuge tube. One tube is needed per module used.

NOTE: A vial containing Array Holding Buffer must be placed in sample holder 3 for each module used.
Washing and Staining Arrays

Fluidics Station 450 Protocol

Table 5.7 Fluidics Station 450 Protocol - Antibody Amplification for Mapping Targets

<table>
<thead>
<tr>
<th></th>
<th>49 Format (Standard)</th>
<th>GenomeWideSNPv1_450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Hyb Wash #1</td>
<td>6 cycles of 5 mixes/cycle with Wash Buffer A at 25°C</td>
<td></td>
</tr>
<tr>
<td>Post Hyb Wash #2</td>
<td>24 cycles of 5 mixes/cycle with Wash Buffer B at 45°C</td>
<td></td>
</tr>
<tr>
<td>Stain</td>
<td>Stain the array for 10 minutes in SAPE solution at 25°C</td>
<td></td>
</tr>
<tr>
<td>Post Stain Wash</td>
<td>6 cycles of 5 mixes/cycle with Wash Buffer A at 25°C</td>
<td></td>
</tr>
<tr>
<td>2nd Stain</td>
<td>Stain the array for 10 minutes in Antibody Stain Solution at 25°C</td>
<td></td>
</tr>
<tr>
<td>3rd Stain</td>
<td>Stain the array for 10 minutes in SAPE solution at 25°C</td>
<td></td>
</tr>
<tr>
<td>Final Wash</td>
<td>10 cycles of 6 mixes/cycle with Wash Buffer A at 30°C. The final holding temperature is 25°C</td>
<td></td>
</tr>
<tr>
<td>Filling Array</td>
<td>Fill the array with Array Holding Buffer.</td>
<td></td>
</tr>
</tbody>
</table>

Wash Buffer A = non-stringent wash buffer
Wash Buffer B = stringent wash buffer

IMPORTANT: The wash and stain buffers are different from the GeneChip® expression buffers.

Washing and Staining Arrays

To wash and stain the arrays:

1. In the Fluidics Station dialog box on the workstation, select the correct experiment name from the drop-down Experiment list.
The Probe Array Type appears automatically.
2. In the Protocol drop-down list, select GenomeWideSNPv1_450.
3. Choose Run in the Fluidics Station dialog box to begin washing and staining. Follow the instructions in the LCD on the fluidics station.

 If you are unfamiliar with inserting and removing arrays from the fluidics station modules, refer to the appropriate Fluidics Station User’s Guide, or Quick Reference Card (P/N 08-0093 for the Fluidics Station 450).
4. Insert an array into the designated module of the fluidics station while the cartridge lever is in the Down or Eject position.

5. When finished, verify that the cartridge lever is returned to the Up or Engaged position.

6. Remove any microcentrifuge vials remaining in the sample holders of the fluidics station module(s) being used.

7. When prompted to “Load Vials 1-2-3,” place the three vials into the sample holders 1, 2 and 3 on the fluidics station.
 - Place one vial containing 600 µL Streptavidin Phycoerythrin (SAPE) stain solution mix in sample holder 1.
 - Place one vial containing 600 µL anti-streptavidin biotinylated antibody stain solution in sample holder 2.
 - Place one vial containing 1 mL Array Holding Buffer in sample holder 3.
 - Press down on the needle lever to snap needles into position and to start the run.

Once these steps are complete, the fluidics protocols begin. The Fluidics Station dialog box at the workstation terminal and the LCD window displays the status of the washing and staining steps.

8. When staining is finished, remove the microcentrifuge vials containing stain and replace with three empty microcentrifuge vials as prompted.

9. Remove the arrays from the fluidics station by first pressing down the cartridge lever to the eject position.

10. Check the array window for large bubbles or air pockets.
 If bubbles are present, 1) use a pipette to manually fill the array with Array Holding Buffer, 2) remove one-half of the solution, then 3) manually fill the array with Array Holding Buffer.

11. If the array has no large bubbles, it is ready for scanning. Pull up on the cartridge lever to engage wash block and proceed to *Scanning Arrays* on page 142.
 If the arrays cannot be scanned promptly, store them at 4°C in the dark until ready for scanning. Scan must be performed within 24 hours.

12. When finished washing and staining, shut down the fluidics station following the procedure listed under *Shutting Down the Fluidics Station* on page 145.
Scanning Arrays

The GeneChip Scanner 3000 7G is also controlled by GCOS Software 1.4. Make sure the laser is warmed up prior to scanning by turning the scanner on at least 10 minutes before use.

If the arrays were stored at 4°C, allow them to warm to room temperature before scanning.

NOTE: Refer to the GeneChip® Operating Software User’s Guide (P/N 701439), online help, and tutorials for more information on scanning.

WARNING: The scanner uses a laser and is equipped with a safety interlock system. Defeating the interlock system may result in exposure to hazardous laser light.

Read and be familiar with the operation of the scanner before attempting to scan an array. Refer to the GeneChip® Scanner 3000 Quick Reference Card (P/N 08-0075).

Prepare arrays for Scanning

Follow the instructions in this section to prepare the arrays for scanning.

To prepare arrays for scanning:

1. If necessary, clean the glass surface of the array with a non-abrasive towel or tissue before scanning.
 Do not use alcohol to clean the glass.

2. On the back of the array cartridge, clean excess fluid from around the septa.

3. Carefully cover both septa with Tough Spots (See Figure 5.2 on page 143).
 Press to ensure the spots remain flat. If the spots do not apply smoothly (e.g. if you see bumps, bubbles, tears or curled edges) do not attempt to smooth out the spot. Remove the spot and apply a new spot.

4. Insert an array into the scanner and test the autofocus to ensure the spots do not interfere with the focus.
 If a focus error message is observed, remove the spot and apply a new spot. Ensure that the spots lie flat.
To scan arrays:

1. Select Run → Scanner from the menu bar.
 Alternatively, click the Start Scan icon in the tool bar.
 The Scanner dialog box appears with a drop-down list of all unscanned experiments.

2. Select the experiment name that corresponds to the array being scanned.
 A previously run experiment can also be selected by using the Include Scanned Experiments option box. After selecting this option, previously scanned experiments appear in the drop-down list.

 NOTE: If the experiment name is not seen in the dialog box, open the workflow monitor, right-click your experiment, and select “Advance to Scan.” Refer to the GeneChip® Operating Software User’s Guide for further information.

3. Click the Load/Eject button and place the array in the scanner.
 Only one scan is required for the GeneChip Scanner 3000 7G.
4. Once the experiment has been selected, click the **Start** button. A dialog box prompts to load the array into the scanner. Pixel resolution and wavelength for the GeneChip Scanner 3000 7G are preset and cannot be changed.

5. Open the sample door of the scanner and insert the array into the holder. The door of the GeneChip Scanner 3000 7G closes automatically.

WARNING: Do not attempt to manually open or close the GeneChip® Scanner 3000 7G scanner door as this may damage the scanner.

IMPORTANT: Do not force the array into the holder.

6. Click **OK** in the Start Scanner dialog box. The scanner begins scanning the array. When **Scan in Progress** is selected from the **View** menu, the array image appears on the screen as the scan progresses.
Shutting Down the Fluidics Station

To shut down the Fluidics Station:

1. Gently lift up the cartridge lever to engage (close) the washblock. After removing an array from the holder, the LCD window displays the message **ENGAGE WASHBLOCK**. The instrument automatically performs a Cleanout procedure. The LCD window indicates the progress of this procedure.

2. When **REMOVE VIALS is displayed in the LCD**, remove the vials from the sample holders. The REMOVE VIALS message indicates the Cleanout procedure is complete.

3. If no other processing is to be performed, place the wash lines into a bottle filled with deionized water.

4. Choose **Shutdown_450** for all modules from the drop-down Protocol list.

5. Click the **Run** button for all modules. The Shutdown protocol is critical to instrument reliability. Refer to the instrument User’s Guide for more information.

6. When the Shutdown protocol is complete, turn the instrument off.

7. Place the wash lines in a different bottle of deionized water than the one used for the shutdown protocol.

IMPORTANT: To maintain the cleanliness of the fluidics station and obtain the highest quality image and data possible, a weekly bleach protocol is highly recommended.
Chapter 6

DATA ANALYSIS

The purpose of this chapter is to:

- Describe the necessary steps to analyze data from Genome-Wide Human SNP Arrays 5.0.
- Present some guidelines for assessing data quality.

This information is intended as a supplement to the information sources listed below and does not replace them:

- *GeneChip® Operating Software User’s Guide (GCOS)*
- *BRLMM Analysis Workflow Document*
- Genome-Wide Human SNP Array 5.0 library files

Software Requirements

- GeneChip® Operating Software (GCOS) 1.4 (client), GCOS 1.3 (server) or higher
- Affymetrix Genome-Wide Human SNP Array 5.0 library files
- BRLMM Analysis Tool 2.0 (BAT 2.0)
- GCOS Service Pack 2 Custom Grid Patch (GCOS SP2)
Overview of the QC and Genotyping Analysis Workflow

This section describes the QC and Genotyping Workflow for generating genotyping calls using BAT 2.0. This process is summarized in Figure 6.1. Note that acquisition of raw data using GCOS precedes analysis by BAT 2.0. Refer to the GeneChip® Operating Software User’s Guide for instructions on .DAT and .CEL file generation.

Figure 6.1 Analysis Workflow for the Genome-Wide Human SNP Array 5.0 Using BAT 2.0
QC and Genotyping Analysis Workflow

The following instructions are for processing data from Genome-Wide SNP Arrays using BAT 2.0. To process data from this array type, you will use the BRLMM-P algorithm.

NOTE: For BRLMM, a minimum of 6 CEL files is required for the algorithm to run. We recommend running a minimum of 80 samples at a time.

For BRLMM-P, there is no minimum. You can run BRLMM-P on a single file, although performance may be poor. We recommend running a minimum of 40 samples at a time, although more samples is generally better.

For improved performance for BRLMM and BRLMM-P, the optimal cluster size is greater than or equal to 200 samples. Performance on rare genotypes continues to improve as the number of samples increases.

Set up the QC Analysis

To set up the QC analysis:

1. Launch BRLMM Analysis Tool 2.0 from **Start > Programs > Affymetrix > BRLMM Analysis Tool**.

![Figure 6.2 QC and Genotyping Workflow Selected](image-url)
2. In the Work Flow box, select **QC and Genotyping**.

3. In the Array Type box, open the drop down menu and select GenomeWideSNP_5.

4. In the Library Files box, click **Browse** and navigate to the folder containing the library files.

 Library files are typically located in this folder:

 C:\Program Files\Affymetrix\GeneChip\Affy_Data\Library

 The path you select is saved from session to session. As long as the library files are not moved, you only need to select the path the first time the software is used. If the library files are moved, you will need to change the library path.

 NOTE: The selected directory must contain the CDF/Library file, the chromosome X file, and the SNP models file.

5. Click **Next**.

 The Next button is disabled until entries are made for each required field. After clicking Next, the Import Options window is displayed.

![Import Options for QC and Genotyping Workflow](image)

Figure 6.3 Import Options for QC and Genotyping Workflow

6. Verify that the correct algorithm is displayed in the “Select the genotyping algorithm” field.

 The algorithm is determined automatically based on the library files selected on the Start Page. For Genome-Wide Human SNP Arrays 5.0, the algorithm is BRLMM-P.
7. Select the CEL files to be analyzed using one of the following methods.
 • Click Add to browse to the directory containing your CEL files; then shift-click or
 control-click to select the CEL files; then click Open.
 Only one array type can be analyzed at a time. Therefore, only arrays that match
 the type selected in the Array Type field can be added. If multiple array types are
 selected, the dialog box shown below is displayed.

 ![Error Message Indicating Array Type Mismatch]

8. Click Add.

 The Next button remains disabled until at least one CEL file is displayed.
 After clicking Next, the Output Options window is displayed (Figure 6.5 on
 page 152).

9. In the General Output Options box:
 A. Select a location for the analysis output using one of the following methods:
 • Click Browse and select a folder.
 • Manually enter the full path to a folder.
 The output location selected becomes the default from session to session. You
 can change the location at any time by clicking Browse and selecting a new
 folder, or by entering the path to a new folder.
 The Next button remains inactive until a valid path is entered correctly.
B. Optional: Manually change the batch name.

The batch name is generated automatically. This name is assigned to a subfolder created automatically in the output folder. All of the results for an individual analysis run are stored in this folder.

NOTE: The default batch name includes the date and time; therefore, it is unique for each run.

10. Optional: In the QC Output Option field, manually change the name for the QC report.

The default name is *qc.report.txt*. This file contains the QC Call rates for the samples analyzed. It is located in the batch subfolder.

11. Click **Next**.

The Algorithm Options for BRLMM-P window is displayed (Figure 6.6 on page 153).

![Figure 6.5 Output Options for the QC and Genotyping Workflow](image.png)
Set Up the Genotyping Analysis

To set up the genotyping analysis:

1. Select the analysis parameters you want to use for this run.

 A. Enter a value in the **Score Threshold** field.
 Score Threshold is the maximum score at which the algorithm will make a genotype call. Scores lower than the threshold are of lower confidence and will result in **No Call**. The default for BRLMM-P is 0.05.

 B. Optional: For advanced parameters, click Advanced (Figure 6.7 on page 154).

 - **Block size** refers to the number of probesets to process at once. This parameter is useful when memory is limited. If set to 0 (default), BAT 2.0 attempts to determine the available RAM and set it appropriately. Refer to the apt-probeset-genotype manual for more information on adjusting this parameter.

 - **Probeset ID File** allows you to restrict analysis to a subset of SNPs. Run time is directly proportional to the number of SNPs specified. Using this option can greatly speed up the run time if you are interested in only a subset of SNPs.

Figure 6.6 Algorithm Options for the QC and Genotyping Workflow

A. Enter a value in the **Score Threshold** field.

B. Optional: For advanced parameters, click Advanced (Figure 6.7 on page 154).
NOTE: If the Probeset ID File option is used, CHP files are not created. Results are in a tab-delimited text file.

Figure 6.7 Advanced Analysis Options for the QC and Genotyping Workflow

The use of advanced analysis options is indicated in the main Algorithm Options window by the text *Advanced options specified* (Figure 6.8).

Figure 6.8 Example of Window When Advanced Options are Used

2. Optional: To reset the parameters back to their default values, click Default.
3. In the Output Options box, specify the output as follows:
 • To analyze a very large number of samples (> 500) at a time:
 • Select the Output Tables option.
 • Deselect the Output CHP Files and Output text files options.
 Results are written to a single file of genotype calls.
 • **Output CHP Files (AGCC) Format**: The genotyping results are stored in a binary CHP file.
 • Selection of AGCC format will store the results in a format compatible with Affymetrix GeneChip Command Console software in a sub-folder named “cc-chp”. See http://www.affymetrix.com/products/software/specific/command_console_software.affx for more information.
 • Selection of GCOS format will store the genotyping results in a binary format compatible with GCOS in a sub-folder named “chp”.

 NOTE: BRLMM-P results can only be stored in text files or AGCC format CHP files.

 • **Output text files**: Output genotype calls and confidences in a directory named txt under the specified output directory. This option creates a single txt file per CEL file analyzed. The txt file has 11 lines of header followed by tab-delimited text with one line per SNP and three columns: Column 1: SNP_ID Column 2: Genotype call (-1=NoCall, 0=AA, 1=AB, 2=BB) Column 3: Genotype call confidence.
 • **Output tables**: Two tab-delimited text matrices named brlmm.calls.txt and brlmm.confidences.txt containing the genotype calls and the confidences respectively are created. The format for each file is a few comment lines prefixed with “#”, a header line (probeset_id, <tab>CEL file 1<TAB> CEL file 2…), and then a line per SNP (SNP_ID <TAB> genotype call or confidence scores CEL file 1<TAB> genotype call or confidence scores CEL file 2…).
 • **Output summaries file**: A tab-delimited text file named brlmm-p.normalized-summary.txt containing the allele signal estimates for each allele. The format for the file is a few comment lines prefixed with “#%” followed by a header line (probeset_id, <tab>CEL file 1<TAB> CEL file 2…), and then one line per allele of each SNP (probeset_id-allele <TAB> allele intensity CEL file 1<TAB> allele intensity CEL file 2…).

 Regardless of which output files are selected, a report file named <filename>.report.txt is generated. The content of this file includes the call rate per CEL file analyzed and additional metrics. See **Output File Formats on page 158** for more information on the output formats available.

4. Click **Next** to start the analysis.
 The Progress Page window opens automatically (Figure 6.9). Status messages and a progress meter are displayed.
5. Optional: To cancel the analysis, click **Cancel**.
 The process that is currently running will finish; then the analysis will be cancelled. Depending on the process that is running, cancellation may take a few minutes.

6. Once the analysis is complete, do one of the following:
 - Click **Finish** to close the application.
 - Click **Back** to return to previous windows.

 Upon completion of the QC analysis, the QC Results window is displayed. The application automatically begins to perform the genotyping using the files that pass the defined QC Call Rate threshold.
Once the QC Results window is closed, it cannot be reopened from BAT 2.0. The information displayed in this window is stored as a file in the Batch subfolder. It is a standard tab-delimited text file that can be opened in Notepad or Microsoft Excel.
Output File Formats

qc.report.txt

The qc.report.txt file contains the QC call rate for all CEL files analyzed.

Clustering Report File

This file is a summary report created in the output directory with the extension .report.txt. It provides a quick overview of the CEL files analyzed.

The format of the file is tab-delimited text with a header line followed by a line for each CEL file analyzed. The content of each column is described in Table 6.1 on page 159. Some of the metrics provided can potentially be used to track and identify outlier arrays.
Table 6.1 Description of Content of brlmm.report.txt Files

<table>
<thead>
<tr>
<th>Column Header</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>The CEL file name.</td>
</tr>
<tr>
<td>Gender</td>
<td>The estimated gender (based upon chrX SNP calls).</td>
</tr>
<tr>
<td>Brlmm_call_rate</td>
<td>The call rate at the default or user-specified threshold.</td>
</tr>
<tr>
<td>AB_percent</td>
<td>The percentage of SNPs called AB (i.e. the heterozygosity).</td>
</tr>
<tr>
<td>AA_percent</td>
<td>The percentage of SNPs called AA.</td>
</tr>
<tr>
<td>BB_percent</td>
<td>The percentage of SNPs called BB.</td>
</tr>
<tr>
<td>Raw_intensity_mean</td>
<td>The average of the raw PM probe intensities.</td>
</tr>
<tr>
<td>Raw_intensity_stdev</td>
<td>The standard deviation of the raw PM probe intensities.</td>
</tr>
<tr>
<td>Allele_summarization_mean</td>
<td>The average of the allele signal estimates (log2 scale).</td>
</tr>
<tr>
<td>Allele_summarization_stdev</td>
<td>The standard deviation of the allele signal estimates (log2 scale).</td>
</tr>
<tr>
<td>Allele_deviation_mean</td>
<td>The average of the absolute difference between the log2 allele signal estimate and its median across all arrays.</td>
</tr>
<tr>
<td>Allele_deviation_stdev</td>
<td>The standard deviation of the absolute difference between the log2 allele signal estimate and its median across all arrays.</td>
</tr>
<tr>
<td>Allele_mad_residuals_mean</td>
<td>The average of the median absolute deviation (MAD) between observed probe intensities and probe intensities fitted by the model.</td>
</tr>
<tr>
<td>Allele_mad_residuals_stdev</td>
<td>The standard deviation of the median absolute deviation (MAD) between observed probe intensities and probe intensities fitted by the model.</td>
</tr>
<tr>
<td>Cluster_distance_mean</td>
<td>The average distance to the cluster center for the called genotype (BRLMM only).</td>
</tr>
<tr>
<td>Cluster_distance_stdev</td>
<td>The standard deviation of the distance to the cluster center for the called genotype (BRLMM only).</td>
</tr>
</tbody>
</table>
Genotype Calls File

The genotype calls file is a text file containing the genotype calls for the analysis run. This file has the extension `.calls.txt`, and consists of a comment section followed by the genotype calls.

The comment section is identified by the prefix “#”, and contains information about the analysis run including the program, the algorithm, library files and command line used to generate the file.

The genotype calls are tab-delimited and are preceded by a header row. The header row indicates which column contains the probeset_ids and the genotype calls for each CEL file. The tab-delimited section contains a header row indicating which column contains the probeset_ids and the genotype calls for each CEL file.

Calls are encoded as follows:
- `-1==NoCall`
- `0==AA`
- `1==AB`
- `2==BB`

![brlmm.calls.txt](image)

Figure 6.13 Example of Genotype Calls File for the BRLMM-P Algorithm
Genotype Confidences Files

The genotype confidences file is a text file containing the confidences for each genotype call for the analysis run. This file has the extension .confidences.txt, and consists of a comment section followed by the tab-delimited confidences. The comment section is identified by the prefix “#”, and contains information about the analysis run including the program, the algorithm, library files and command line used to generate the file.

The tab-delimited section contains a header row indicating which column contains the probeset_ids and the confidences for each genotype call.

![brim.confidences.txt](image)

Figure 6.14 Example of Genotype Confidences File
Probeset-genotype.log

The probeset-genotype.log file contains the output of the algorithm engine for the analysis run.

Figure 6.15 Example of the probeset-genotype.log
Probeset-qc.log

This file contains the output of the QC algorithm engine.

Figure 6.16 Example of the probeset-qc.log
SNP Intensity Summary File

The SNP intensity summary file is a tab-delimited text file containing the allele signal estimates for each allele. The file name includes the extension `.PLIER.summary.txt`. The file format is a few comment lines prefixed with `"#%"`, followed by a header line (probeset_id, <tab>CEL file 1<TAB> CEL file 2…), and then one line per allele of each SNP (probeset_id-allele <tab> summarized intensity CEL file 1<TAB> summarized intensity CEL file 2…).

Figure 6.17 Example of the SNP Intensity Summary File
Assessing Data Quality

This section is designed to assist you with establishing guidelines for evaluating results generated from genotyping experiments. To assess data quality and to identify outlier samples, the BAT 2.0 QC report (Figure 6.18) has a number of metrics that should be evaluated for each array. These metrics are defined in Table 6.2 on page 166.

It is important to check these metrics, and to create a running log for each project. The Reference Genomic DNA 103, included in the Genome-Wide Human SNP Nsp/Sty Assay Kit 5.0 can serve as a positive control to ensure that all of the steps of the assay are being performed correctly. Evaluation of a particular sample should be based on QC report performance metrics.

Figure 6.18 Example of QC Report
QC Call Rate

QC Call Rate is displayed in the QC Results window (Figure 6.19) upon completion of analysis. Once this window is closed, the file (qc.results.txt) can be opened in an application such as Notepad. It is an indicator of the overall performance of the assay (for Genome-Wide Human SNP Array 5.0). A QC Call Rate in excess of 86% indicates that all steps, from restriction digestion through scanning, worked as expected.

A reduced Call Rate may result if an error in any of the assay steps occurs or if lower quality DNA samples are processed. It is also common to observe lower Call Rates in circumstances where a new operator is learning the assay or the number of samples processed at one time increases. In these later examples, it may be prudent to budget time for additional practice for the operator in order to increase proficiency with the assay and achieve higher performance. Some other factors that can lead to a reduced Call Rate include:

- Deviation from the assay protocol
- Contaminated DNA
- Expired reagents

For a sample with a lower Call Rate, it is important to take into consideration the reasons for the lower Call Rate as well as the degree to which accuracy is compromised. It may be necessary to repeat target preparation for that sample depending on the degree to which the lower Call Rate and decrease in accuracy affects the overall experimental goals. Refer to Chapter 7, Troubleshooting for troubleshooting tips.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip CEL file name</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Called gender of the sample</td>
</tr>
<tr>
<td>QC Call Rate (Nsp)</td>
<td>QC call rate for SNPs on NSP fragments</td>
</tr>
<tr>
<td>QC Call Rate (Nsp/Sty Overlap)</td>
<td>QC call rate for SNPs on both NSP and STY fragments</td>
</tr>
<tr>
<td>QC Call Rate Sty</td>
<td>QC call rate for SNPs on STY fragments</td>
</tr>
<tr>
<td>QC Call Rate (All)</td>
<td>QC call rate for all SNPs</td>
</tr>
</tbody>
</table>
Genomic DNA Quality

Genomic DNA should be prepared following the guidelines in Chapter 3 of this manual. DNA prepared outside of these guidelines (e.g., degraded DNA, nicked DNA or DNA with inhibitors) may produce lower Call Rates without necessarily reducing accuracy. A gel image of the DNA before restriction digestion should be used to evaluate DNA quality. Direct comparison to the Reference Genomic DNA control is one way to accomplish this. If an alternate genomic DNA preparation method is used, we highly recommend that a small pilot experiment be conducted to evaluate reproducibility and accuracy of genotype calls.

Deviation from Assay Protocol

A problem in any step of the assay may lead to a decreased Call Rate. The gel images produced before DNA digestion and before PCR cleanup, the PCR yield after cleanup, and a gel image after fragmentation can be used to identify problematic steps. Consult Chapter 7, Troubleshooting for further information.

At a minimum, a PCR negative control (water instead of DNA template) should be incorporated into each group of samples processed. The Reference Genomic DNA control is included in the assay kit as a positive process control.

Figure 6.19 Example of a QC Call Rate Report
Oligonucleotide Controls

The oligonucleotide control reagent contains oligonucleotide B2 and 4 hybridization control oligonucleotides.

B2 Oligo Performance

The B2 oligo is a component of the Oligo Control Reagent, 0100 (OCR). It is spiked into each hybridization cocktail and is highlighted on the image by the following:

- The alternating pattern of intensities on the border
- The checkerboard pattern at each corner (Figure 6.20 on page 168) and throughout the array
- The array name, located in the lower left corner of the array (Figure 6.21 on page 168)

B2 Oligo serves as a positive hybridization control and is used by the software to place a grid over the image. Variation in B2 hybridization intensities across the array is normal and does not indicate variation in hybridization efficiency.

Figure 6.20 Example of Checker Board Pattern

Figure 6.21 Array name (image has been rotated for display)
Figure 6.22 on page 169 is the scanned image of the Genome-Wide Human SNP Array 5.0. Notice how the array appears to be divided into four quadrants. The genotyping probes are tiled within each quadrant. Non-polymorphic probes are tiled in the bands that form the quadrant boundaries.
Downstream Analysis Considerations

Association studies are designed to identify SNPs with subtle allele frequency differences between different populations. Genotyping errors, differences in sample collection and processing, and population differences are among the many things that can contribute to false positives or false negatives. Efforts should be made to minimize or account for technical or experimental differences. For example, randomization of cases and controls prior to genotyping can reduce or eliminate any possible effects from running cases and controls under different conditions.

Data Filtering

For many genotyping applications, poorly performing SNPs can lead to an increase in false positives and a decrease in power. Such under-performing SNPs can be caused by systematic or sporadic errors that occur due to stochastic, sample or experimental factors. To filter out errors and exclude these SNPs in downstream analysis, a two-tiered filtering process is recommended. In the first filter, samples are included only if the QC call rate is greater than 86% when using high quality DNA (see Chapter 3, Genomic DNA General Requirements). The QC call rate is based on generating calls using the DM algorithm. This algorithm can run on a single array using a set of about 3000 SNPs enriched for SNPs that are challenging to call. These QC call rates are well correlated with the higher call rates and concordance achieved when calls are subsequently made with BRLMM-P. The genotypes for passing samples are generated using the BRLMM-P algorithm. In general, clustering larger batches of samples will improve the performance of the algorithm.

Prior to downstream analysis, it is prudent to apply some SNP filtering criteria to remove SNPs that are not performing ideally in the data set in question. The subject of SNP filtering is an area of current research and best practices are still being developed by the community. Some common filters used will:

- Remove SNPs with a significantly low per SNP call rate
- Remove SNPs out of HW equilibrium in controls
- Remove SNPs with significantly different call rates in cases and controls
- Remove SNPs with Mendelian errors

Studies on multiple data sets have shown that SNPs with a lower per SNP call rate tend to have a higher error rate, and disproportionately contribute to the overall error rate in the experiment.

SNP Cluster Visualization

Applying per-SNP filters helps remove the majority of problematic SNPs. However, no filtering scheme is perfect. Even with stringent filtering, a small proportion of poorly performing SNPs will remain.
Moreover, the poorly performing SNPs will often be the ones most likely to perform differently between cases and controls. The list of most significantly associated SNPs is often enriched for such problematic SNPs.

The SNP filtering process greatly reduced the occurrence of these false positives. But given their tendency to end up on the list of associated SNPs, it is likely that some will remain. Before carrying forth SNPs to subsequent phases of analysis, visual inspection of the SNPs in the clustering space used by BRLMM-P is strongly recommended. Visual inspection typically helps in identifying problematic cases. BAT 2.0 has an option to export a tab-delimited text file of the SNP allele signals which can be used as an input to standard analysis programs such as Matlab, R and Splus to plot SNP clusters.

Increasing or Decreasing Accuracy and Call Rate

Adjust the default QC call rate or BRLMM-P thresholds to increase or decrease accuracy and call rate.

Affymetrix genotyping software provides flexible options to enable a trade off between call rate and genotyping accuracy. QC call rate is determined by the DM algorithm on a carefully selected set of 3022 SNPs, tiled with both perfect matches and mismatches. This set of SNPs is also enriched for lower-performing SNPs to serve as a more effective predictor of performance in a clustering analysis.

We have chosen a QC call rate of 86% as the default. This default is expected to result in reasonable call rates and accuracy. Samples right at the 86% QC call rate threshold are expected to have a call rate around 97% with BRLMM-P analysis, with an average accuracy of ~99%. A strong correlation exists between the QC call rate and BRLMM-P performance. The more a sample exceed the 86% threshold, the better the performance.

For BRLMM-P analysis, we have chosen a confidence score value of 0.05 as the default. This default provides a good compromise between accuracy and call rate. This value is adjustable in Affymetrix genotyping software, to give flexibility to increase call rates with lower genotyping accuracy, or to decrease call rates with greater genotyping accuracy.
Assay Recommendations

Genotyping applications require very high accuracy to achieve maximum power. Therefore, great care should be taken to avoid possible sources of cross contamination that would lead to genotyping errors. As with any assay using PCR, the GeneChip® Mapping Assay has an inherent risk of contamination with PCR product from previous reactions.

In Chapter 2 Laboratory Setup and Recommendations, we recommend a workflow to minimize the risk of cross contamination during the assay procedure. It is essential to adhere to workflow recommendations. PCR reactions should only be carried out in the main laboratory. Personnel should not re-enter the Pre-PCR Clean and PCR Staging areas following potential exposure to PCR product without first showering and changing into clean clothes.

It is essential to carefully read and follow the protocol as written. The assay in this manual has been validated using the reagents and suppliers listed. Substitution of reagents and shortcuts are not recommended as they could result in suboptimal results. For example, always use AccuGENE® water from Cambrex, and ligase and restriction enzymes from New England Biolabs.

Additional recommendations are as follows:

- Think ahead to ensure that the reagents and equipment you require, including pipettes, are in the correct work area. Ensuring the proper equipment is available in the proper laboratory areas will make the workflow easier and will help reduce the risk of sample contamination.
- Pay particular attention to the storage and handling of reagents. Proper storage and handling is particularly important for enzymes such as DNA Ligase and the Fragmentation Reagent (DNase I). Both of these enzymes are sensitive to temperatures exceeding –20°C.

To prevent loss of enzyme activity:

- Immediately place the enzyme in a cooler chilled to –20 °C when removed from the freezer. Immediately return the enzyme to –20 °C after use.
- Take care when pipetting enzymes stored in glycerol, which is viscous. Do not store at –80 °C.
- Because Fragmentation Reagent (DNAse I) activity can decline over time after dilution on ice, add it to the samples as quickly as possible.

- Preparing master mixes with a 15% excess ensures consistency in reagent preparation by minimizing pipetting errors and reducing handling time of temperature sensitive reagents. The success of this assay depends on the accurate pipetting and subsequent thorough mixing of small volumes of reagents.
- The PCR reaction for this assay has been validated using one of the specified thermal cyclers. These thermal cyclers were chosen because of their ramping times. We highly recommend the PCR thermal cyclers be calibrated regularly. Take care programming your thermal cycler and use the thin walled reaction tubes recommended. Thicker walled tubes may result in reduced PCR efficiency and lower yields.
- It is essential to run gels to monitor both the PCR reaction and the fragmentation reaction.

For the PCR reaction, individual PCR products are run on a gel. Product (bands) should be visible in the 200 to 1100 bp size range. See Chapter 4 Affymetrix® Genome-Wide Human SNP Nsp/Sty 5.0 Assay: 48 Sample Protocol and Appendix C, E-gels. for more information and instructions.

Following fragmentation, run samples on a gel. Successful fragmentation is confirmed by the presence of a smear of less than 200 bp in size. See Chapter 4 Affymetrix® Genome-Wide Human SNP Nsp/Sty 5.0 Assay: 48 Sample Protocol and Appendix C, E-gels. for more information and instructions.

- Run controls in parallel with each group of samples.
 Substitute water for DNA at the PCR step as a negative control. The absence of bands on your PCR gel for this control confirms no previously amplified PCR product has contaminated your samples. Use Reference Genomic DNA 103 as a positive control (included in the reagent kit). These controls are effective troubleshooting tools that will help you confirm the successful completion of each stage of the assay.
- Oligonucleotide controls are included in the reagent kit. These controls are added to the target samples prior to hybridization and act to confirm successful hybridization, washing, staining, and sensitivity of the array. The oligonucleotide control reagents contain oligo B2 which is used for grid alignment.
- For greater efficiency, we recommend using a team approach to sample processing. This approach is described About Using Controls on page 35.
- Regularly calibrate all multichannel pipettes.
- Check that your spectrophotometer is accurately calibrated, and be sure the OD measurement is within the quantitative linear range of the instrument (0.2 to 2.0 OD).
- Hybridization ovens should be serviced at least once per year to ensure that they are operating within the manufacturer’s specifications.
Important Differences Between Genome-Wide Human SNP Arrays 5.0 and GeneChip® Expression Arrays

- For laboratories that also run GeneChip Expression arrays, always check the temperature setting on the Hybridization Oven 640.
 - For the Genome-Wide Human SNP Array 5.0, ovens should be set to 50°C.
 - The temperature for hybridization on expression arrays is 45°C.
- Buffer B is different for the expression and DNA arrays. Using the MES based buffer B from the Expression protocol will result in substantially reduced call rates for the Genome-Wide Human SNP Array 5.0. Also, care should be taken to ensure the fluidics station is properly maintained and primed with the correct buffers prior to use.
- Both the Genome-Wide Human SNP 5.0 Nsp/Sty Assay and Expression protocols use the same stain reagents for each staining step. However, after the last wash the Genome-Wide Human SNP Array 5.0 is filled with Array Holding Buffer.
- Genome-Wide Human SNP Arrays 5.0 are scanned once at 570 nm on the GeneChip® Scanner 3000 7G.
Troubleshooting the Genome-Wide Human SNP 5.0 Nsp/Sty Assay

<table>
<thead>
<tr>
<th>Problem</th>
<th>Likely Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faint/absent bands on PCR gel</td>
<td>Both samples & positive control affected.</td>
<td>Ensure all reagents added to master mixes and enzymes are stored at –20°C. Work quickly with enzymes and return to –20°C directly after use to prevent loss of activity.</td>
</tr>
<tr>
<td>Faint/absent bands on PCR gel</td>
<td>Problem with master mixes or individual reagents.</td>
<td>Ensure all reagents added to master mixes and enzymes are stored at –20°C. Work quickly with enzymes and return to –20°C directly after use to prevent loss of activity.</td>
</tr>
<tr>
<td>Failed restriction digest.</td>
<td>Both samples & positive control affected.</td>
<td>Use restriction enzyme to digest a known good DNA sample. Run gel to confirm restriction enzyme activity. Use the correct concentration of BSA.</td>
</tr>
<tr>
<td>Failed adaptor ligation reaction.</td>
<td>Failed restriction digest.</td>
<td>Use restriction enzyme to digest a known good DNA sample. Run gel to confirm restriction enzyme activity. Use the correct concentration of BSA.</td>
</tr>
<tr>
<td>Failed adaptor ligation reaction.</td>
<td>Failed adaptor ligation reaction.</td>
<td>Confirm enzyme activity.</td>
</tr>
<tr>
<td>Reduced adaptor ligation efficiency</td>
<td>Reduced adaptor ligation efficiency due to adaptor self-ligation, DNA re-ligation.</td>
<td>To prevent self-ligation of adaptor work rapidly and add DNA ligase last.</td>
</tr>
<tr>
<td>Failed PCR reaction.</td>
<td>Check PCR reagents. Take care with preparation of master mixes and ensure accurate pipetting and thorough mixing.</td>
<td>Check PCR reagents. Take care with preparation of master mixes and ensure accurate pipetting and thorough mixing.</td>
</tr>
<tr>
<td>Reduced PCR reaction yield – non optimal PCR conditions.</td>
<td>Use a validated thermal cycler, check PCR programs. Use recommended thin walled reaction tubes.</td>
<td>Use a validated thermal cycler, check PCR programs. Use recommended thin walled reaction tubes.</td>
</tr>
<tr>
<td>Ligation mix not diluted prior to PCR reaction.</td>
<td>Ligation mixture diluted 1:4 with molecular biology grade water to remove potential inhibitors and maintain optimal pH and salt concentration.</td>
<td>Ligation mixture diluted 1:4 with molecular biology grade water to remove potential inhibitors and maintain optimal pH and salt concentration.</td>
</tr>
<tr>
<td>Incorrect concentration of nucleotides.</td>
<td>Incorrect concentration of nucleotides.</td>
<td>Check dNTP stock concentration and vendor.</td>
</tr>
<tr>
<td>Used Nsp adaptor for Sty digest, or vice versa.</td>
<td>Used Nsp adaptor for Sty digest, or vice versa.</td>
<td>Repeat Ligation step with correct adaptors.</td>
</tr>
</tbody>
</table>
Faint/absent bands on PCR gel (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Likely Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples affected (but positive controls OK).</td>
<td>Non-optimal reaction conditions.</td>
<td>Use master mixes and include a positive control to eliminate reagents and assay problems as detailed above.</td>
</tr>
<tr>
<td></td>
<td>Insufficient starting material.</td>
<td>250 ng genomic DNA should be used. Confirm concentration using calibrated spectrophotometer.</td>
</tr>
<tr>
<td></td>
<td>Sample DNA contains enzymatic or chemical inhibitors.</td>
<td>Ensure genomic DNA is purified and diluted in Low EDTA (0.1mM) TE buffer. Use recommended procedure to ethanol precipitate genomic DNA to remove inhibitors.</td>
</tr>
<tr>
<td></td>
<td>Degraded sample DNA.</td>
<td>Confirm quality of genomic DNA sample.</td>
</tr>
</tbody>
</table>

Low PCR yield

DNA lost during purification. Gel images show PCR product, but low OD.

<table>
<thead>
<tr>
<th>Likely Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum elution is not complete.</td>
<td>Ensure that filtering is complete for all wells (matte/dull look) before stopping vacuum elution.</td>
</tr>
</tbody>
</table>

Insufficient purified PCR product for quantitation

<table>
<thead>
<tr>
<th>Problem</th>
<th>Likely Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Volume in a particular well(s) on the elution catch plate is < 2 µL after transferring 45 µL to the fragmentation plate | | Do the following in this order:
 * Add 2 µL Buffer EB to the corresponding wells on the fragmentation plate.
 * Mix by pipetting up and down.
 * Transfer 2 µL to the corresponding well(s) on the OD plate.
 * Proceed to fragmentation with 45 µL in each well. |

Insufficient purified PCR product for fragmentation

<table>
<thead>
<tr>
<th>Problem</th>
<th>Likely Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Volume in a particular well(s) on the elution catch plate is < 45 µL | | Do the following in this order:
 * Measure the actual volume using a pipettor.
 * Add Buffer EB to a final volume of 47 µL.
 * Mix by pipetting up and down.
 * Transfer 2 µL to the corresponding well(s) in the OD plate.
 * Proceed to fragmentation with 45 µL in each well. |
<table>
<thead>
<tr>
<th>Problem</th>
<th>Likely Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmented PCR product is not the correct size</td>
<td>PCR product is still visible in 200-1,100 bp size region</td>
<td>Failed or incomplete fragmentation due to reduced DNase activity. Check that you have selected the correct activity of DNase from Table 4.46 on page 108 to add to fragmentation reaction. (See Dilute the Fragmentation Reagent on page 108) Ensure fragmentation reagent (DNase I) is kept at –20°C. Do not reuse diluted working stock.</td>
</tr>
<tr>
<td>.CEL file can not be generated</td>
<td>GCOS is unable to align grid.</td>
<td>Unable to place a grid on the .dat file due to the absence of B2 signal. Hybridization controls including oligo B2 must be added to hybridization cocktail for grid alignment.</td>
</tr>
<tr>
<td>.dat image is dim.</td>
<td>Insufficient signal intensity or staining failure.</td>
<td>Make fresh stain buffers.</td>
</tr>
<tr>
<td></td>
<td>Incorrect wash buffers used on fluidics station.</td>
<td>Prime the fluidics station with the correct buffers prior to running the assay. Incorrect wash buffers will disrupt hybridization of the labeled, fragmented DNA.</td>
</tr>
<tr>
<td>Low SNP call rates</td>
<td>Gel images and spectrophotometric quantitation indicate successful PCR reaction.</td>
<td>Over fragmentation of DNA sample due to incorrect dilution of Fragmentation Reagent (DNase I) stock. Check that you have selected the correct activity of DNase from Table 4.46 on page 108 to add to fragmentation reaction. (See Dilute the Fragmentation Reagent on page 108. Work quickly and on ice; transfer reaction tubes to pre-heated thermal cycler (37°C). Mix thoroughly.</td>
</tr>
<tr>
<td></td>
<td>Extremely low call rate Sample hybridization is absent on .cel and .dat images but B2 grid is bright.</td>
<td>Labeling reaction suboptimal. Use a new vial of Terminal Deoxynucleotidyl Transferase. Verify the labeling reagents and repeat labeling.</td>
</tr>
<tr>
<td></td>
<td>Positive control has good call rates but samples are lower than expected.</td>
<td>Genomic DNA not optimal. Ensure DNA samples are of high quality (i.e., run in a 1 to 2% gel and compare to Reference 103 DNA control). Use positive control sample as a reference guide for assay procedures. Prepare master mixes for samples and controls.</td>
</tr>
<tr>
<td></td>
<td>Very low call rates</td>
<td>Mixed up Nsp and Sty enzymes during the digestion or ligation stages. Repeat the experiment, making sure the correct reagents are used for each digestion and ligation stage.</td>
</tr>
</tbody>
</table>
OD Troubleshooting Guidelines

Refer to the tables below when troubleshooting OD readings.

Table 7.1 PROBLEM: Sample OD is greater than 1.2 (6 µg/µL)

If the sample OD is greater than 1.2 (calculated concentration greater than 6 µg/µL), a problem exists with either the elution of PCR products or the OD reading. The limit on PCR yield is approximately 6 µg/µL, as observed in practice and as predicted by the mass of dNTPs in the reaction.

Possible causes include:

- The purified PCR product was eluted in a volume less than 55 µL.
- The purified PCR product was not mixed adequately before making the 1:100 dilution.
- The diluted PCR product was not mixed adequately before taking the OD reading.
- The water blank reading was not subtracted from each sample OD reading.
- The spectrophotometer plate reader may require calibration.
- Pipettes may require calibration.
- There may be air bubbles or dust in the OD plate.
- There may be defects in the plastic of the plate.
- The settings on the spectrophotometer plate reader or the software may be incorrect.
- OD calculations may be incorrect and should be checked.

Table 7.2 PROBLEM: Sample OD is Less Than 1.0 (5 µg/µL)

If the sample OD is less than 1.0 (calculated concentration less than 5 µg/µL), a problem may exist with either the genomic DNA, the PCR reaction, the elution of purified PCR products, or the OD readings.

Possible problems with input genomic DNA that would lead to reduced yield include:

- The presence of inhibitors (heme, EDTA, etc.).
- Severely degraded genomic DNA.
- Inaccurate concentration of genomic DNA.

Check the OD reading for the PCR products derived from RefDNA 103 as a control for these issues.

To prevent problems with the PCR reaction that would lead to reduced yield:

- Use the recommended reagents and vendors (including AccuGENE® water) for all PCR mix components.
Table 7.2 (Continued) PROBLEM: Sample OD is Less Than 1.0 (5 µg/µL)

- Thoroughly mix all components before making the PCR Master Mix.
- Pipette all reagents carefully, particularly the PCR Primer, when making the master mix.
- Check all volume calculations for making the master mix.
- Store all components and mixes on ice when working at the bench. Do not allow reagents to sit at room temperature for extended periods of time.
- Be sure to use the recommended PCR plates. Plates from other vendors may not fit correctly in the thermal cycler block. Differences in plastic thickness and fit with the thermal cycler may lead to variance in temperatures and ramp times.
- Be sure to use the correct cycling mode when programming the thermal cycler (maximum mode on the GeneAmp® PCR System 9700; calculated mode on the MJ Tetrad PTC-225 or Tetrad 2).
- Be sure to use silver or gold-plated silver blocks on the GeneAmp® PCR System 9700 (other blocks are not capable of maximum mode, which will affect ramp times).
- Use the recommended plate seal. Make sure the seal is tight and that no significant evaporation occurs during the PCR.

NOTE: The Genome-Wide SNP 5.0 Assay reaction amplifies a size range of fragments that represents ~30% of the genome. The Genome-Wide Human SNP Array 5.0 are designed to detect the SNPs that are amplified in this complex fragment population. Subtle changes in the PCR conditions may not affect the PCR yield, but may shift the amplified size range up or down very slightly. This can lead to reduced amplification of SNPs that are assayed on the array, subsequently leading to lower call rates.

Troubleshooting Possible Problems with the Elution or OD Readings – possible causes include:

- The purified PCR product was not mixed adequately before making the 1:100 dilution.
- The water blank reading was not subtracted from each sample OD reading.
- The spectrophotometer plate reader may require calibration.
- Pipettes may require calibration.
- There may be air bubbles or dust in the OD plate.
- There may be defects in the plastic of the plate.
- The settings on the spectrophotometer plate reader or the software may be incorrect.
- OD calculations may be incorrect and should be checked.
Table 7.3 **PROBLEM: OD260/OD280 ratio is not between 1.8 and 2.0**

<table>
<thead>
<tr>
<th>Possible causes include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The PCR product may be not be sufficiently purified. Ensure the vacuum manifold is working properly.</td>
</tr>
<tr>
<td>• An error may have been made while taking the OD readings.</td>
</tr>
<tr>
<td>• The PCR product may not have been adequately washed. Check the 75% EtOH wash solution.</td>
</tr>
</tbody>
</table>

Table 7.4 **PROBLEM: The OD320 measurement is significantly larger than zero (0 ± 0.005)**

<table>
<thead>
<tr>
<th>Possible causes include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Magnetic beads may have been carried over into purified sample.</td>
</tr>
<tr>
<td>• Precipitate may be present in the eluted samples.</td>
</tr>
<tr>
<td>• There may be defects in the OD plate.</td>
</tr>
<tr>
<td>• Air bubbles in the OD plate or in solutions.</td>
</tr>
</tbody>
</table>
When to Contact Technical Support

Instruments

Under any of the following conditions, unplug the instrument from the power source and contact Affymetrix Technical Support:

- when the power cord is damaged or frayed
- if any liquid has penetrated the instrument
- if, after service or calibration, the instrument does not perform to specifications

If the instrument must be returned for repair, call Affymetrix Technical Support.

NOTE: Make sure you have the model and serial number.

<table>
<thead>
<tr>
<th>Affymetrix, Inc.</th>
<th>Affymetrix UK Ltd</th>
<th>Affymetrix Japan, K. K.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3420 Central Expressway
Santa Clara, CA 95051
USA</td>
<td>E-mail: support@affymetrix.com
Tel: 1-888-362-2447 (1-888-DNA-CHIP)
Fax: 1-408-731-5441</td>
<td>E-mail: support@affymetrix.com
Tel: (03) 5730-8200
Fax: (03) 5730-8201</td>
</tr>
<tr>
<td>Affymetrix UK Ltd</td>
<td>Voyager, Mercury Park,
Wycombe Lane, Wooburn Green,
High Wycombe HP10 0HH
United Kingdom</td>
<td>Tel: (03) 5730-8200
Fax: (03) 5730-8201</td>
</tr>
<tr>
<td>Affymetrix Japan, K. K.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8

VACUUM MANIFOLD AND FLUIDICS STATION CARE AND MAINTENANCE

This chapter includes guidelines and instructions on:

- Cleaning the vacuum manifold
- General care of the fluidics station
- A cleaning (bleach) protocol that should be run once per week

Cleaning the Vacuum Manifold

Salt buildup occurs with repeated use of the vacuum manifold. The vacuum can be compromised and sample contamination may occur when too much salt is present. Regular cleaning of the vacuum manifold is recommended.

To clean the vacuum manifold:

1. Disassemble the vacuum manifold (base, cover, cover gasket).
2. Soak the parts in warm water for 5 minutes.
3. Thoroughly rinse and dry each part.
4. Reassemble the vacuum manifold.

General Fluidics Station Care

- Use a surge protector on the power line to the fluidics station.
- Always run a Shutdown protocol when the instrument will be off or unused overnight or longer. This will prevent salt crystals from forming within the fluidics system.
- To ensure proper functioning of the instrument, perform periodic maintenance.
- When not using the instrument, leave the sample needles in the lowered position. Each needle should extend into an empty vial. This will protect them from accidental damage.
- Always use deionized water to prevent contamination of the lines. Change buffers with freshly prepared buffer at each system startup.
• The fluidics station should be positioned on a sturdy, level bench away from extremes in temperature and away from moving air.

□ **WARNING:** Before performing any maintenance, turn off power to the fluidics station to avoid injury in case of a pump or electrical malfunction.
Fluidics Station Bleach Protocol

Affymetrix recommends a weekly cleaning protocol for the fluidics station. This protocol uses commonly purchased sodium hypochlorite bleach.

This protocol is designed to eliminate any residual SAPE-antibody complex that may be present in the fluidics station tubing and needles. The protocol runs a bleach solution through the system followed by a rinse cycle with deionized (DI) water. This protocol takes approximately one hour and forty minutes to complete. Affymetrix recommends running this protocol weekly, regardless of the frequency of use. The current version of the protocol can be found at: www.affymetrix.com/support/technical/fluidics_scripts.affx.

The Bleach Cycle

To avoid carryover, or cross contamination, from the bleach protocol, Affymetrix recommends the use of dedicated bottles for bleach and DI water. Additional bottles can be obtained from Affymetrix.

<table>
<thead>
<tr>
<th>Table 8.1 Affymetrix Recommended Bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>400118</td>
</tr>
<tr>
<td>400119</td>
</tr>
</tbody>
</table>

1. Disengage the washblock for each module by pressing down on the cartridge lever. Remove any probe array cartridge Figure 8.1 on page 186.

2. Prepare 500 mL of 0.525% sodium hypochlorite solution using deionized water. You can follow these directions to make 500 mL of bleach:

 In a 1 liter plastic or glass graduated cylinder, combine 43.75 mL of commercial bleach (such as Clorox® bleach, which is 6% sodium hypochlorite) with 456.25 mL of DI H₂O, mix well. Pour the solution into a 500 mL plastic bottle, and place the plastic bottle on fluidics station.

IMPORTANT:

- The shelf life of this solution is 24 hours. After this period, you must prepare fresh solution.
- Each fluidics station with 4 modules requires 500 mL of 0.525% sodium hypochlorite solution.
3. As shown in Figure 8.2 on page 187:

 A. Place on the fluidics station an empty one liter waste bottle, a 500 mL bottle of bleach and a one liter bottle of DI water. The Bleach protocol requires approximately one liter of DI water.
 B. Insert the waste line into the waste bottle.
 C. Immerse all three wash and water lines into the bleach solution.

 ! IMPORTANT: Do NOT immerse the waste line into the bleach.
4. Open GeneChip® Operating Software (GCOS), Microarray Suite, or the current version of the Affymetrix control software.
5. Click Run → Fluidics... from the menu. Alternatively, click the down arrow on the Protocol list on the tool bar. The protocol window appears (Figure 8.3).

![Figure 8.3 The Fluidics Station protocol window: select all modules.](image)

6. Choose the current bleach protocol (as of the writing of this manual, it is BLEACHv2_450) for each of the respective modules in the Protocol drop-down list. Select all four modules, 1 to 4, and click Run.

NOTE: The fluidics station will not start until the needle lever is pressed down (Figure 8.4 on page 189). The temperature will ramp up to 50 °C.

7. Follow the prompts on each LCD. Load empty 1.5 mL vials onto each module if not already done so.
8. Press down on each of the needle levers to start the bleach protocol (Figure 8.4).

9. The fluidics station will begin the protocol, emptying the lines and performing the cleaning cycles using bleach solution.

10. After approximately 30 minutes, the LCD will prompt you when the bleach cycle is over and the rinse cycle is about to begin.
The Rinse Cycle

Once the bleach cycle has finished, the second part of the protocol is a rinse step. This step is essential to remove all traces of bleach from the system. Failure to complete this step can result in damaged arrays.

1. Follow the prompts on the LCD for each module. Lift up on the needle levers and remove the bleach vials. Load clean, empty vials onto each module.
2. Remove the three wash and water lines from the bleach bottle and transfer them to the DI water bottle (Figure 8.5).
 At this step, there is no need to be concerned about the bleach remaining in the lines.

 Figure 8.5 Immerse the three wash and water lines in the DI water bottle.

3. Press down on the needle levers to begin the rinse cycle.
 The fluidics station will empty the lines and rinse the needles.
4. When the rinse is completed after approximately one hour, the fluidics station will bring the temperature back to 25°C and drain the lines with air. The LCD display will read CLEANING DONE.

5. Discard the vials used for the bleach protocol.

6. After completing the bleach protocol, follow the suggestions for storage of the Fluidics Station 450 in Table 8.2 below.

Table 8.2 Storage Suggestions for the Fluidics Station 450

<table>
<thead>
<tr>
<th>If:</th>
<th>Then do this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning to use the system immediately</td>
<td>After running the bleach protocol, remove the DI water supply used in the rinse phase and install the appropriate reagents for use in the next staining and washing protocol (including fresh DI water).</td>
</tr>
<tr>
<td></td>
<td>• Perform a prime protocol without loading your probe arrays.</td>
</tr>
<tr>
<td></td>
<td>Failure to run a prime protocol will result in irreparable damage to the loaded hybridized probe arrays.</td>
</tr>
<tr>
<td>Not planning to use the system immediately</td>
<td>Since the system is already well purged with water, there is no need to run an additional shutdown protocol.</td>
</tr>
<tr>
<td></td>
<td>Remove the old DI water bottle and replace it with a fresh bottle.</td>
</tr>
<tr>
<td>Not planning to use the system for an extended period of time (longer than one week)</td>
<td>Remove the DI water and perform a “dry” protocol shutdown. This will remove most of the water from the system and prevent unwanted microbial growth in the supply lines.</td>
</tr>
<tr>
<td></td>
<td>Also, remove the pump tubing from the peristaltic pump rollers.</td>
</tr>
</tbody>
</table>
About this Appendix

This appendix includes the vendor and part number information for the reagents, equipment and consumables that have been validated for use with the Genome-Wide Human SNP 5.0 Nsp/Sty Assay®.

IMPORTANT: Use only the PCR plate, adhesive film and thermal cyclers listed in Table A.6. Using other PCR plates and film that are incompatible with the thermal cycler can result in crushed tubes, loss of sample, or poor results.

The following lists of reagents, equipment and consumables are included in this appendix:

- Affymetrix Reagents Required on page 194
- New England Biolabs Reagents Required on page 195
- Other Reagents Required on page 196
- Affymetrix Equipment and Software Required on page 197
- Other Equipment Required on page 198
- Thermal Cyclers, PCR Plates and Plate Seals on page 199
- Arrays Required on page 201
- Gels and Gel Related Materials Required on page 201
- Other Consumables Required on page 202
Reagents

Affymetrix Reagents Required

The Affymetrix® Genome-Wide Human SNP Nsp/Sty Assay Kit 5.0 is required to perform this protocol. The kit is available in two sizes:

- 100 reaction size – P/N 901015
- 30 reaction size — P/N 901013

Table A.1 Affymetrix® Genome-Wide Human SNP Nsp/Sty Assay Kit 5.0

<table>
<thead>
<tr>
<th>Kit Contents</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Genomic DNA 103, 50 ng/µL (use as a positive control)</td>
<td>Included</td>
</tr>
<tr>
<td>Box 1:</td>
<td></td>
</tr>
<tr>
<td>• Adaptor Nsp I, 50 µM</td>
<td></td>
</tr>
<tr>
<td>• PCR Primer 002, 100 µM</td>
<td></td>
</tr>
<tr>
<td>Box 2:</td>
<td></td>
</tr>
<tr>
<td>• Adaptor Sty I, 50 µM</td>
<td></td>
</tr>
<tr>
<td>• PCR Primer 002, 100 µM</td>
<td>901015</td>
</tr>
<tr>
<td>Box 3:</td>
<td></td>
</tr>
<tr>
<td>• Oligonucleotide Control Reagent, 0100</td>
<td></td>
</tr>
<tr>
<td>• GeneChip® DNA Labeling Reagent, 30 mM</td>
<td></td>
</tr>
<tr>
<td>• Terminal Deoxynucleotidyl Transferase, 30 U/µL</td>
<td></td>
</tr>
<tr>
<td>• 5X Terminal Deoxynucleotidyl Transferase Buffer</td>
<td></td>
</tr>
<tr>
<td>• 10X Fragmentation Buffer</td>
<td></td>
</tr>
<tr>
<td>• GeneChip® Fragmentation Reagent (see label on tube for U/µL concentration)</td>
<td>901013 (30 reactions)</td>
</tr>
</tbody>
</table>
New England Biolabs Reagents Required

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nsp I, 125 µL vial</td>
<td>10,000 U/mL containing:</td>
<td>R0602L</td>
</tr>
<tr>
<td></td>
<td>• Bovine Serum Albumin (BSA); NEB P/N B9001S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NEBuffer 2; NEB P/N B7002S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The BSA and NEBuffer can be ordered separately using these part numbers.</td>
<td></td>
</tr>
<tr>
<td>Sty I, 300 µL vial</td>
<td>10,000 U/mL containing:</td>
<td>R0500S</td>
</tr>
<tr>
<td></td>
<td>• Bovine Serum Albumin (BSA); NEB P/N B9001S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NEBuffer; NEB P/N B7003S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The BSA and NEBuffer can be ordered separately using these part numbers.</td>
<td></td>
</tr>
<tr>
<td>T4 DNA Ligase, 250 µL vial</td>
<td>Contains:</td>
<td>M0202L</td>
</tr>
<tr>
<td></td>
<td>• T4 DNA Ligase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• T4 DNA Ligase Buffer; NEB P/N B202S</td>
<td></td>
</tr>
</tbody>
</table>
Other Reagents Required

Table A.3 Other Reagents Required for the Genome-Wide Human SNP 5.0 Nsp/Sty Assay

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Vendor</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITANIUM™ DNA Amplification Kit</td>
<td>Clontech</td>
<td>Contains:</td>
<td>639240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 50X TITANIUM™ Taq DNA Polymerase</td>
<td>(300 reactions-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10X TITANIUM™ Taq PCR Buffer</td>
<td>enough for 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GC-Melt</td>
<td>samples) or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dNTPs</td>
<td>639243 (400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reactions)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITANIUM™ Taq DNA Polymerase (50X) and</td>
<td>Clontech</td>
<td>Contains:</td>
<td>P/N 639209</td>
</tr>
<tr>
<td>TITANIUM™ Taq PCR Buffer</td>
<td></td>
<td>• 50X Clontech TITANIUM™ Taq DNA Polymerase</td>
<td>(also in kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10X Clontech TITANIUM™ Taq PCR Buffer</td>
<td>P/N 639240 or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>639243 above)</td>
</tr>
<tr>
<td>GC-Melt</td>
<td>Clontech</td>
<td>5 M</td>
<td>639238</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(also in kit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P/N 639240 or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>639243 above)</td>
</tr>
<tr>
<td>Beads, Magnetic</td>
<td>Agencourt</td>
<td>AMPure 130, 60 mL</td>
<td>000130</td>
</tr>
<tr>
<td>Buffer EB (250 mL)</td>
<td>Qiagen</td>
<td>250 ml Elution Buffer</td>
<td>19086</td>
</tr>
<tr>
<td>dNTPs*</td>
<td>Takara</td>
<td>Included in the Clontech TITANIUM DNA Amplification Kit listed above.</td>
<td>4030</td>
</tr>
<tr>
<td></td>
<td>Fisher Scientific</td>
<td>mixture of dATP, dCTP, dGTP, dTTP at 2.5 mM each</td>
<td>TAK 4030</td>
</tr>
<tr>
<td>Denhardt’s Solution</td>
<td>Sigma-Aldrich</td>
<td>D2532</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>Sigma-Aldrich</td>
<td>D5879</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>Sigma-Aldrich</td>
<td>ACS reagent, 8 99.5% (200 proof), absolute</td>
<td>459844</td>
</tr>
<tr>
<td>Herring Sperm DNA (HSDNA)</td>
<td>Promega</td>
<td>D1815</td>
<td></td>
</tr>
<tr>
<td>Human Cot-1 DNA®</td>
<td>Invitrogen</td>
<td>15279-011</td>
<td></td>
</tr>
<tr>
<td>MES Hydrate SigmaUltra</td>
<td>Sigma-Aldrich</td>
<td>M5287</td>
<td></td>
</tr>
<tr>
<td>MES Sodium Salt</td>
<td>Sigma-Aldrich</td>
<td>M5057</td>
<td></td>
</tr>
<tr>
<td>Reduced EDTA TE Buffer</td>
<td>TEKnova</td>
<td>10 mM Tris HCL, 0.1 mM EDTA, pH 8.0</td>
<td>T0223</td>
</tr>
<tr>
<td>Tetramethyl Ammonium Chloride (TMACL; 5M)</td>
<td>Sigma-Aldrich</td>
<td>5M</td>
<td>T3411</td>
</tr>
</tbody>
</table>
Equipment and Software Required

This protocol has been optimized using the following equipment and software.

Affymetrix Equipment and Software Required

Table A.4 Affymetrix Equipment and Software Required

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeneChip® Fluidics Station 450*</td>
<td>00-0079</td>
</tr>
<tr>
<td>GeneChip® Hybridization Oven 640*</td>
<td>800139</td>
</tr>
<tr>
<td>GeneChip® Scanner 3000 7G*</td>
<td>00-0205</td>
</tr>
<tr>
<td>GeneChip® Operating Software version 1.4*</td>
<td>690031</td>
</tr>
<tr>
<td>BRLMM Analysis Tool 2.0*</td>
<td>—</td>
</tr>
</tbody>
</table>

* Denotes critical reagents, equipment or supplies. Formulations or vendors not listed here have not been tested and verified at Affymetrix. In some cases, lower performance has been demonstrated by reagents from non-qualified vendors.
Other Equipment Required

Table A.5 Other Equipment Required to Run the Genome-Wide Human SNP 5.0 Nsp/Sty Assay

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Quantity</th>
<th>Manufacturer/Distributor</th>
<th>Part Number</th>
<th>Laboratory Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collar, Multiscreen</td>
<td>1</td>
<td>Millipore</td>
<td>MSVMHTS0D</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Cooler (−20 °C)</td>
<td>2</td>
<td>Stratagene</td>
<td>400012</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>StrataCooler® Lite Benchtop</td>
<td>2</td>
<td>Stratagene</td>
<td>400002 (blue)</td>
<td></td>
</tr>
<tr>
<td>StrataCooler® II Benchtop</td>
<td>4</td>
<td></td>
<td>400008 (red)</td>
<td></td>
</tr>
<tr>
<td>Cooling chamber</td>
<td>3 double</td>
<td>Diversified Biotech</td>
<td>CHAM-1000 (single)</td>
<td>2 double and 1 single in PCR Staging Area; 1 double in Main Lab</td>
</tr>
<tr>
<td></td>
<td>1 single</td>
<td></td>
<td>CHAM-1020 (double)</td>
<td></td>
</tr>
<tr>
<td>Ice bucket (4 to 9 liters)</td>
<td>2</td>
<td></td>
<td></td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>Jitterbug™ Microplate Incubator Shaker</td>
<td>1</td>
<td>In the U.S.A.: Fisher Scientific</td>
<td>11-701-13</td>
<td>Main Lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the U.S.A.: VWR</td>
<td>35821-065</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the U.S.A. and all other countries: Boekel Scientific</td>
<td>130000 (115V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>130000-2 (230V)</td>
<td></td>
</tr>
<tr>
<td>Vacuum Manifold, MultiScreenHTS</td>
<td>1</td>
<td>Millipore</td>
<td>MSVMHTS00</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Microcentrifuge, PicoFuge®</td>
<td>2</td>
<td>Stratagene</td>
<td>400650</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>(maximum rotation 6000 rpm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipet-Lite™, Magnetic-Assist single channel P20</td>
<td>2</td>
<td>Rainin</td>
<td>L-20</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>Pipet-Lite™, Magnetic-Assist single channel P200</td>
<td>2</td>
<td>Rainin</td>
<td>L-200</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>Pipet-Lite™, Magnetic-Assist single channel P1000</td>
<td>2</td>
<td>Rainin</td>
<td>L-1000</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Pipette, 12-channel P20</td>
<td>2</td>
<td>Rainin</td>
<td>P/N L12-20</td>
<td>Pre-PCR and Main Lab</td>
</tr>
</tbody>
</table>
Thermal Cyclers, PCR Plates and Plate Seals

Quantity Required

Five thermal cyclers are required for this protocol:

- One in the PCR Staging Room
- Four in the Main Lab

Vendor and Part Number Information

This protocol has been optimized using the following thermal cyclers, PCR plate and adhesive film.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Quantity</th>
<th>Manufacturer/Distributor</th>
<th>Part Number</th>
<th>Laboratory Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipette, 12-channel P100</td>
<td>2</td>
<td>Rainin</td>
<td>P/N L12-100</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>Pipette, 12-channel P200</td>
<td>2</td>
<td>Rainin</td>
<td>P/N L12-200</td>
<td>Pre-PCR</td>
</tr>
<tr>
<td>Pipette, 12- or 8 channel P1200</td>
<td>1</td>
<td>Rainin</td>
<td>P/N</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Plate Centrifuge, multipurpose (must be deep well in Main Lab)</td>
<td>1</td>
<td>Eppendorf</td>
<td>5804 or 5810</td>
<td>Pre-PCR</td>
</tr>
<tr>
<td>Plate Centrifuge, multipurpose, deep well (must accommodate plates 54mm height; 160g weight)</td>
<td>1</td>
<td>Eppendorf</td>
<td>5804 or 5810</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Plate holders</td>
<td>9</td>
<td>USA Scientific</td>
<td>2300-9602</td>
<td>7 Main Lab</td>
</tr>
<tr>
<td>Spectrophotometer, high throughput microplate spectrophotometer</td>
<td>1</td>
<td>Molecular Devices</td>
<td>SpectraMax Plus384</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Thermal Cyclers – see Table A.6 on page 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vortexer, for plates and tubes (must have plate pad)</td>
<td>2</td>
<td>VWR</td>
<td>58816-12</td>
<td>Pre-PCR and Main Lab</td>
</tr>
</tbody>
</table>

IMPORTANT: Use only the PCR plate, adhesive film and thermal cyclers listed in Table A.6. Using other PCR plates and film that are incompatible with the thermal cycler can result in crushed tubes, loss of sample, or poor results.
Table A.6 Thermal Cyclers, PCR Plates and Plate Seals Optimized for Use With the Genome-Wide Human SNP 5.0 Nsp/Sty Assay

<table>
<thead>
<tr>
<th>Area</th>
<th>Thermal Cyclers Validated for Use</th>
<th>Plate</th>
<th>Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR Staging Room</td>
<td>Applied Biosystems units:</td>
<td>Multiplate 96-Well Unskirted PCR Plates Bio-Rad, P/N MLP-9601</td>
<td>MicroAmp® Clear Adhesive Films Applied Biosystems, P/N 4306311</td>
</tr>
<tr>
<td></td>
<td>• 2720 Thermal Cycler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GeneAmp® PCR System 9700</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bio-Rad units:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MJ Tetrad PTC-225</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DNA Engine Tetrad 2 (PTC0240-TETRAD2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Lab</td>
<td>Applied Biosystems:</td>
<td>Multiplate 96-Well Unskirted PCR Plates Bio-Rad, P/N MLP-9601</td>
<td>MicroAmp® Clear Adhesive Films Applied Biosystems, P/N 4306311</td>
</tr>
<tr>
<td></td>
<td>• GeneAmp® PCR System 9700 by (silver block or gold-plated silver block)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bio-Rad units:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MJ Tetrad PTC-225</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DNA Engine Tetrad 2 (PTC0240-TETRAD2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consumables Required

Arrays Required

This protocol requires the use of Affymetrix® Genome-Wide Human SNP Arrays 5.0.

<table>
<thead>
<tr>
<th>Arrays/Pack</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>901069</td>
</tr>
<tr>
<td>30</td>
<td>901070</td>
</tr>
<tr>
<td>100</td>
<td>901071</td>
</tr>
</tbody>
</table>

Gels and Gel Related Materials Required

Use either standard gels (Table A.8) or E-Gels (Table A.9 on page 202).

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel, Reliant® Gel System, precast agarose gel (2% SeaKem Gold, TBE)</td>
<td>Cambrex</td>
<td>54939 (2% SeaKem)</td>
</tr>
<tr>
<td>or 4% NuSieve 3:1 Plus, TBE Buffer, 8 bp = 1 kb 2 x 12 wells, ethidium bromide</td>
<td></td>
<td>54929 (4% BMA)</td>
</tr>
<tr>
<td>All Purpose Hi-Lo DNA Marker</td>
<td>Bionexus</td>
<td>BN2050</td>
</tr>
<tr>
<td>Gel Loading Buffer</td>
<td>Sigma-Aldrich</td>
<td>G2526</td>
</tr>
</tbody>
</table>
Table A.9 E-Gels and Related Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother E-Base™</td>
<td></td>
<td>EB-M03</td>
</tr>
<tr>
<td>Daughter E-Base™</td>
<td>Invitrogen</td>
<td>EB-D03</td>
</tr>
<tr>
<td>E-Gel® 48 2% agarose gel, 8 pack</td>
<td></td>
<td>G8008-02</td>
</tr>
<tr>
<td>E-Gel® 48 4% agarose gel, 8 pack</td>
<td></td>
<td>G8008-04</td>
</tr>
<tr>
<td>25 bp DNA Ladder (used with E-Gel 48 4%)</td>
<td></td>
<td>10597-011</td>
</tr>
<tr>
<td>5X SB loading medium (used with E-Gel 48 4%)</td>
<td>Faster Better Media</td>
<td>SB5N-8</td>
</tr>
<tr>
<td>All Purpose Hi-Lo DNA Marker (used with E-Gel 48 2%)</td>
<td>Bionexus</td>
<td>BN2050</td>
</tr>
<tr>
<td>Gel Loading Buffer (used with E-Gel 48 2%)</td>
<td>Sigma-Aldrich</td>
<td>G2526</td>
</tr>
</tbody>
</table>

Other Consumables Required

Table A.10 Other Consumables Required for the Genome-Wide Human SNP 5.0 Nsp/Sty Assay

<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer/Distributor</th>
<th>Part Number</th>
<th>Laboratory Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipette tips</td>
<td>Rainin</td>
<td>GP-L10F</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>As needed for pipettes listed in Table A.5.</td>
<td></td>
<td>GP-L200F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GP-L1000F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT-L10F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT-L200F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT-L1000F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GP = refill</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT = with rack</td>
<td></td>
</tr>
<tr>
<td>Plate seals – see Table A.6 on page 200</td>
<td></td>
<td></td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>Plates, 96-well PCR – see Table A.6 on page 200</td>
<td></td>
<td></td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>Microplate, 96-well, conical bottom (Elution Catch Plate)</td>
<td>In the U.S.A. only: E & K Scientific</td>
<td>EK-21101</td>
<td>Main Lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other countries: 651101</td>
<td></td>
</tr>
</tbody>
</table>
Table A.10 (Continued) Other Consumables Required for the Genome-Wide Human SNP 5.0 Nsp/Sty Assay

<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer/Distributor</th>
<th>Part Number</th>
<th>Laboratory Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate, 2ml, 96 Well Format Filterplate (PES 0.45 µm) Hydrophilic, Long Drip Director</td>
<td>In the U.S.A. only: E & K Scientific</td>
<td>XP0228</td>
<td>Main Lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All other countries: Seahorse Bioscience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Well Storage Plate, 2.4 mL (Pooling Plate)</td>
<td>In the U.S.A. only: E & K Scientific</td>
<td>EK-2280</td>
<td>Main Lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All other countries: Greiner Bio-One</td>
<td>780280</td>
<td></td>
</tr>
<tr>
<td>Plates, 96-well UV Star, 370 µL/well</td>
<td>E&K Scientific</td>
<td>25801</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Solution Basin, 100 mL sterile, multichannel</td>
<td>Labcor</td>
<td>730-014</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Solution Basin, 55 mL sterile, multichannel</td>
<td>Labcor</td>
<td>730-004</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>Solution Basin lid, 55 mL</td>
<td>Labcor</td>
<td>730-021</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td>Tough-Spots®</td>
<td>Diversified Biotech</td>
<td>SPOT-1000</td>
<td>Main Lab</td>
</tr>
<tr>
<td></td>
<td>USA Scientific</td>
<td>9185-1000</td>
<td></td>
</tr>
<tr>
<td>Tubes, strip of 12, thin wall (0.2 mL)</td>
<td>CLP Direct</td>
<td>3426.12</td>
<td>Pre-PCR and Main Lab</td>
</tr>
<tr>
<td></td>
<td>ISC BioExpress</td>
<td>T-3114-1</td>
<td></td>
</tr>
<tr>
<td>Tube, centrifuge 15 mL</td>
<td>VWR</td>
<td>20171-020</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Tube, centrifuge 50 mL</td>
<td>VWR</td>
<td>21008-178</td>
<td>Main Lab</td>
</tr>
<tr>
<td>Tube, Eppendorf 2.0 mL</td>
<td>VWR</td>
<td>20901-540</td>
<td>Pre-PCR</td>
</tr>
<tr>
<td>Tube, Falcon, 50 mL</td>
<td>VWR</td>
<td>21008-940</td>
<td>Pre-PCR</td>
</tr>
</tbody>
</table>
Supplier Contact List

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Web Site Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affymetrix</td>
<td>www.affymetrix.com</td>
</tr>
<tr>
<td>Agencourt Bioscience Corp.</td>
<td>agencourt.com</td>
</tr>
<tr>
<td>Applied Biosystems</td>
<td>www.appliedbiosystems.com</td>
</tr>
<tr>
<td>Bionexus Inc.</td>
<td>www.bionexus.net</td>
</tr>
<tr>
<td>Bio-Rad</td>
<td>bio-rad.com</td>
</tr>
<tr>
<td>Boekel Scientific</td>
<td>www.boekelsci.com</td>
</tr>
<tr>
<td>Cambrex</td>
<td>www.cambrex.com</td>
</tr>
<tr>
<td>CLP Direct</td>
<td>clpdirect.com</td>
</tr>
<tr>
<td>Clontech</td>
<td>www.clontech.com</td>
</tr>
<tr>
<td>Diversified Biotech</td>
<td>divbio.com</td>
</tr>
<tr>
<td>E&K Scientific</td>
<td>eandkscientific.com</td>
</tr>
<tr>
<td>Eppendorf</td>
<td>eppendorf.com</td>
</tr>
<tr>
<td>Faster Better Media</td>
<td>fasterbettermedia.com</td>
</tr>
<tr>
<td>Fisher Scientific</td>
<td>www.thermofisher.com</td>
</tr>
<tr>
<td>Greiner Bio-One</td>
<td>www.gbo.com</td>
</tr>
<tr>
<td>ISC Bioexpress</td>
<td>iscbioexpress.com</td>
</tr>
<tr>
<td>Invitrogen Life Technologies</td>
<td>invitrogen.com</td>
</tr>
<tr>
<td>Labcor</td>
<td>labcorproducts.com</td>
</tr>
<tr>
<td>Millipore</td>
<td>millipore.com</td>
</tr>
<tr>
<td>Molecular Devices</td>
<td>moleculardevices.com</td>
</tr>
<tr>
<td>New England Biolabs</td>
<td>www.neb.com</td>
</tr>
<tr>
<td>Pierce Biotechnology</td>
<td>piercenet.com</td>
</tr>
<tr>
<td>(part of Thermo Fisher Scientific)</td>
<td></td>
</tr>
<tr>
<td>Promega</td>
<td>www.promega.com</td>
</tr>
<tr>
<td>Rainin</td>
<td>www.rainin.com</td>
</tr>
<tr>
<td>Seahorse Bioscience</td>
<td>www.seahorselabware.com</td>
</tr>
</tbody>
</table>
Table A.11 (Continued) Supplier Contact List

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Web Site Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma-Aldrich</td>
<td>www.sigma-aldrich.com</td>
</tr>
<tr>
<td>Stratagene</td>
<td>stratagene.com</td>
</tr>
<tr>
<td>Takara Bio Inc.</td>
<td>www.takara-bio.com</td>
</tr>
<tr>
<td>Teknova</td>
<td>teknova.com</td>
</tr>
<tr>
<td>USA Scientific</td>
<td>www.usascientific.com</td>
</tr>
<tr>
<td>VWR</td>
<td>vwr.com</td>
</tr>
</tbody>
</table>
This appendix includes the thermal cycler programs required for the Genome-Wide Human SNP 5.0 Nsp/Sty Assay.

Before you begin processing samples, enter and save these programs into the appropriate thermal cyclers.

GW5.0 Digest

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>120 minutes</td>
</tr>
<tr>
<td>65°C</td>
<td>20 minutes</td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
</tr>
</tbody>
</table>

GW5.0 Ligate

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>16°C</td>
<td>180 minutes</td>
</tr>
<tr>
<td>70°C</td>
<td>20 minutes</td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
</tr>
</tbody>
</table>
GW5.0 PCR

For the GeneAmp® PCR System 9700
You must use GeneAmp PCR System 9700 thermal cyclers with silver or gold-plated silver blocks. Do not use GeneAmp® PCR System 9700 thermal cyclers with aluminum blocks.
Ramp speed: Max
Volume: 100 µL

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>3 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>94°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>45 seconds</td>
<td>30X</td>
</tr>
<tr>
<td>68°C</td>
<td>15 seconds</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>7 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>4°C</td>
<td>HOLD (Can be held overnight)</td>
<td></td>
</tr>
</tbody>
</table>

For the MJ Tetrad PTC-225 and Tetrad 2
Use: Heated Lid and Calculated Temperature
Volume: 100 µL

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>3 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>94°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>30 seconds</td>
<td>30X</td>
</tr>
<tr>
<td>68°C</td>
<td>15 seconds</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>7 minutes</td>
<td>1X</td>
</tr>
<tr>
<td>4°C</td>
<td>HOLD (Can be held overnight)</td>
<td></td>
</tr>
</tbody>
</table>
GW5.0 Fragment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>35 minutes</td>
</tr>
<tr>
<td>95°C</td>
<td>15 minutes</td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
</tr>
</tbody>
</table>

GW5.0 Label

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>4 hours</td>
</tr>
<tr>
<td>95°C</td>
<td>15 minutes</td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
</tr>
</tbody>
</table>

Samples can remain at 4 °C overnight.

GW5.0 Hyb

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>10 minutes</td>
</tr>
<tr>
<td>49°C</td>
<td>Hold</td>
</tr>
</tbody>
</table>
This appendix describes the use of E-GelS® for confirming:

- Sty and Nsp PCR reactions
- Fragmentation reactions

Before Using E-Gels

When Using the E-Gel 48 2%

Use the following reagents:

- Loading solution: Gel Loading Buffer from Sigma-Aldrich
 Dilute this solution to 1:20 or 1:30 using H₂O before use.
- DNA Marker: All Purpose Hi-Lo DNA Marker from Bionexus
 Dilute this marker 1:3 with H₂O before use.

For more information, refer to Appendix A, Reagents, Equipment, and Consumables.

When Using the E-Gel 48 4%

Use the following reagents:

- Loading solution: 5xSB Loading Medium from Faster Better Media
 Dilute this solution to 1:20 or 1:30 with H₂O before use.
- DNA Marker: 25 bp DNA Ladder from Invitrogen
 5xSB Loading Medium contains Orange-G. Because Orange-G is known to affect DNA migration slightly, and because E-Gels are salt sensitive, dilute the ladder and samples with the same loading solution.

For more information, refer to Appendix A, Reagents, Equipment, and Consumables.
Modifications for Stage 3: Sty PCR

Follow the Stage 3 instructions listed in *Stage 3: Sty PCR* on page 47 with the modifications listed below.

Gels and Related Materials Required

Reference Table 4.16 on page 49. The amounts listed are sufficient to process 48 Sty samples.

<table>
<thead>
<tr>
<th>Table C.1 E-Gels and Related Materials Required for Stage 3: Sty PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
</tbody>
</table>
| 180 µL | All Purpose Hi-Lo DNA Marker, diluted 1:3 with H₂O
(See *When Using the E-Gel 48 2%* on page 211) |
| As needed | Gel loading buffer, diluted 1:20 or 1:30 with H₂O
(See *When Using the E-Gel 48 2%* on page 211) |
| 3 | E-Gel 48 2% agarose gel |
| 3 | Plates, 96-well reaction |

Running Gels

Before Running Gels

To ensure consistent results, take 3 µL aliquot from each PCR.

WARNING: Wear the appropriate personal protective equipment when handling ethidium bromide.

Run the Gels

When the GW5.0 PCR program is finished:

1. Remove each plate from the thermal cycler.
2. Spin down plates at 2000 rpm for 30 sec.
3. Place plates in cooling chambers on ice or keep at 4 °C.
4. Label three fresh 96-well reaction plates P1Gel, P2Gel and P3Gel.
5. Aliquot 12 µL of diluted gel loading buffer to each well in rows A through D of the fresh, labeled PXGel plates.
6. Using a 12-channel P20 pipette, transfer 3 µL of each PCR product from the 3 Sty PCR plates to the corresponding plate, row and wells of the PXGel plates. Example: 3 µL of each PCR product from each well of row A on plate P1 is transferred to the corresponding wells of row A on plate P1Gel.

7. Seal the PXGel plates.

8. Vortex the center of each PXGel plate, then spin them down at 2000 rpm for 30 sec.

9. Load the total volume of 15 µL from each well of each PXGel plate onto E-Gel 48 2% agarose gels.

10. Run the gels for 22 min.

11. Verify that the PCR product distribution is between ~250 bp to 1100 bp (Figure C.1).

Figure C.1 Example of PCR Products Run on E-Gel 48 2% Agarose Gel for 22 min. Average Product Distribution is Between ~250 to 1100 bp.
Modifications for Stage 6: Nsp PCR

Follow the Stage 3 instructions in Stage 6: Nsp PCR on page 71 with the modifications listed below.

Gels and Related Materials Required

Reference Table 4.30 on page 73. The amounts listed are sufficient to process 48 samples.

| Table C.2 E-Gels and Related Materials Required for Stage 6: Nsp PCR |
|-------------------|------------------|
| **Quantity** | **Reagent** |
| 240 µL | All Purpose Hi-Lo DNA Marker, diluted 1:3 with H₂O (See When Using the E-Gel 48 2% on page 211) |
| As needed | Gel loading buffer, diluted 1:20 or 1:30 with H₂O (See When Using the E-Gel 48 2% on page 211) |
| 4 | E-Gel 48 2% agarose gel |
| 4 | Plates, 96-well reaction |

Running Gels

Reference the instructions on page 80.

Before Running Gels

To ensure consistent results, take 3 µL aliquot from each PCR.

WARNING: Wear the appropriate personal protective equipment when handling ethidium bromide.

Run the Gels

When the GW5.0 PCR program is finished:

1. Remove each plate from the thermal cycler.
2. Spin down plates at 2000 rpm for 30 sec.
3. Place plates in cooling chambers on ice or keep at 4 °C.
4. Label four fresh 96-well reaction plates P1Gel, P2Gel, P3Gel, and P4Gel.
5. Aliquot 12 µL of diluted gel loading buffer to each well in rows A through D of the fresh, labeled PXGel plates.
6. Using a 12-channel P20 pipette, transfer 3 µL of each PCR product from the 4 Nsp PCR plates to the corresponding plate, row and wells of the PXGel plates. Example: 3 µL of each PCR product from each well of row A on plate P1 is transferred to the corresponding wells of row A on plate P1Gel.

7. Seal the PXGel plates.

8. Vortex the center of each PXGel plate, then spin them down at 2000 rpm for 30 sec.

9. Load the total volume of 15 µL from each well of each PXGel plate onto E-Gel 48 2% agarose gels.

10. Run the gels for 22 min.

11. Verify that the PCR product distribution is between ~250 bp to 1100 bp (see Figure C.1 on page 213).
Modifications for Stage 9: Fragmentation

Follow the Stage 9 instructions in *Stage 9: Fragmentation on page 103* with the modifications listed below.

Gels and Related Materials Required

Reference Table 4.45 on page 105. The amounts listed are sufficient to process 48 samples.

<table>
<thead>
<tr>
<th>Table C.3 E-Gels and Related Materials Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>60 µL</td>
</tr>
<tr>
<td>As needed</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Check the Fragmentation Reaction

Reference the instructions on page 111.

To ensure that fragmentation was successful:

1. When the GW5.0 Fragment program is finished:
 A. Remove the plate from the thermal cycler.
 B. Spin down the plate at 2000 rpm for 30 sec, and place in a cooling chamber on ice.

2. Dilute 1.5 µL of each fragmented PCR product with 13.5 µL of diluted 5xSB Loading Medium.

3. Run on E-Gel 48 4% agarose gels with the 25 bp DNA Ladder for 22 min.
 - The colorless 25 bp DNA ladder is diluted 1:15 with diluted 5xSB Loading Medium.
 - Use 15 µL diluted ladder for each marker lane.

4. Inspect the gel and compare it against the example shown in *Figure C.2 on page 217*.
Figure C.2 Typical Example of Fragmented PCR Products Run on an E-Gel 48 4% Agarose Gel for 22 min.